
MATLAB® Builder™ EX 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ EX User’s Guide

© COPYRIGHT 1984–2010 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 2001 Online only New for Version 1.0
July 2002 First printing Revised for Version 1.1 (Release 13)
June 2004 Online only Revised for Version 1.2 (Release 14) Name changed from

MATLAB® Builder for Excel® to MATLAB® Builder™ EX
August 2004 Online only Revised for Version 1.2.1 (Release 14+)
October 2004 Online only Revised for Version 1.2.2 (Release 14SP1)
September 2005 Online only Revised for Version 1.2.5 (Release 14SP3)
March 2006 Online only Revised for Version 1.2.6 (Release 2006a)
September 2006 Online only Revised for Version 1.2.7 (Release 2006b)
March 2007 Online only Revised for Version 1.2.8 (Release 2007a)
September 2007 Online only Revised for Version 1.2.9 (Release 2007b)
March 2008 Online only Revised for Version 1.2.10 (Release 2008a)
October 2008 Online only Revised for Version 1.2.11 (Release 2008b)
March 2009 Online only Revised for Version 1.2.12 (Release 2009a)
September 2009 Online only Revised for Version 1.2.13 (Release 2009b)
March 2010 Online only Revised for Version 1.2.15 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2
MATLAB® Compiler Extension . 1-2
About Component Object Model (COM) 1-2
Limitations of Support . 1-3

Before You Use MATLAB® Builder EX 1-4
Your Role in the Deployment Process 1-4
What You Need to Know . 1-6
Install Required Products . 1-7
Select Your C or C++ Compiler with mbuild -setup 1-7

Deploying an Excel Add-in Component Using the Magic
Square Example . 1-8
About This Example . 1-8
Magic Square Example: MATLAB Programmer Tasks . . . 1-8
Using the Command Line Interface 1-15
Magic Square Example: Microsoft® Visual Basic
Programmer Tasks . 1-16

Next Steps . 1-20

Writing Deployable MATLAB Code

2
The MATLAB Application Deployment Products 2-2

Building Your Application with the Application
Deployment Products and the Deployment Tool 2-4
What Is the Difference Between the Deployment Tool and
the mcc Command Line? . 2-4

v

How Does MATLAB® Compiler Software Build My
Application? . 2-4

What You Should Know About the Dependency Analysis
Function (depfun) . 2-5

Compiling MEX-Files, DLLs, or Shared Libraries 2-6
The Role of the Component Technology File (CTF
Archive) . 2-7

Guidelines for Writing Deployable MATLAB Code 2-10
Compiled Applications Do Not Process MATLAB Files at
Runtime . 2-10

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 2-11

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 2-11

Gradually Refactor Applications That Depend on
Noncompilable Functions . 2-12

Do Not Create or Use Nonconstant Static State
Variables . 2-12

Working with MATLAB Data Files Using Load and
Save . 2-14
Using Load/Save Functions to Process MATLAB Data for
Deployed Applications . 2-14

Programming with MATLAB® Builder EX

3
Overview of the Integration Process 3-2

When to Use a Formula Function or a Subroutine 3-3

Initializing MATLAB® Builder EX Libraries with
Microsoft® Excel . 3-4

Creating an Instance of a Class . 3-6
Overview . 3-6
CreateObject Function . 3-6

vi Contents

New Operator . 3-7
How the MCR Is Shared Among Classes 3-8

Calling the Methods of a Class Instance 3-9

Processing varargin and varargout Arguments 3-11
Overview . 3-11
Passing an Empty varargin from Microsoft® Visual Basic
Code . 3-12

Calling Compiled MATLAB Functions from Microsoft®

Excel . 3-14

Handling Errors During a Method Call 3-17

Modifying Flags . 3-18
Overview . 3-18
Array Formatting Flags . 3-18
Data Conversion Flags . 3-21

Improving Data Access Using the MCR User Data
Interface, COM Components, and MATLAB® Builder
EX . 3-24
Overview . 3-24
Code Snippets . 3-25

Overriding Default CTF Archive Embedding for
Components Using the MCR Component Cache 3-26

Usage Examples

4
Magic Square Example . 4-2
Overview . 4-2
Creating the Project . 4-3
Adding the MATLAB® Builder EX COM Function to
Microsoft® Excel . 4-3

vii

Output Magic Square Results to Microsoft® Excel 4-3
Transpose the Output . 4-4
Resize the Output . 4-4
Inspecting the Microsoft® Visual Basic Code 4-5

Multiple Files and Variable Arguments Example 4-6
Overview . 4-6
Creating the Project . 4-6
Adding the MATLAB® Builder EX COM Function to
Microsoft® Excel . 4-7

Calling myplot . 4-8
Calling mysum Four Different Ways 4-9
myprimes Macro . 4-10
Inspecting the Microsoft® Visual Basic Code 4-11

Spectral Analysis Example . 4-12
Overview . 4-12
Building the Component . 4-13
Integrating the Component Using VBA 4-14
Testing the Add-In . 4-26
Packaging and Distributing the Add-In 4-28
Installing the Add-In . 4-29

Function Wizard

5
Overview of the Function Wizard 5-2

Installing the Function Wizard Add-In 5-3
Overview . 5-3
Installing with Versions of Microsoft Office Older Than
2007 . 5-3

Installing with Microsoft Office 2007 5-3

Starting the Function Wizard . 5-5
Overview . 5-5
Starting the Function Wizard with Versions of Microsoft
Office Older Than 2007 . 5-5

viii Contents

Starting the Function Wizard with Microsoft Office
2007 . 5-6

Understanding the Function Viewer 5-7
Overview . 5-7
Using the Function Viewer . 5-7
Loading and Executing Functions . 5-7

Component Browser . 5-9

Function Properties . 5-10
Function Properties Dialog Box . 5-10
Editing Function Arguments . 5-11

Argument Properties . 5-15
Input Argument Properties Dialog Box 5-15
Output Argument Properties Dialog Box 5-16

Function Utilities . 5-17
Rename Function Dialog Box . 5-17
Copy Function Dialog Box . 5-17
Move Function Dialog Box . 5-18

Function Reference

6

Utility Library for Microsoft COM Components

7
Referencing Utility Classes . 7-2

Utility Library Classes . 7-3
Class MWUtil . 7-3
Class MWFlags . 7-10
Class MWStruct . 7-16

ix

Class MWField . 7-23
Class MWComplex . 7-24
Class MWSparse . 7-26
Class MWArg . 7-29

Enumerations . 7-31
Enum mwArrayFormat . 7-31
Enum mwDataType . 7-31
Enum mwDateFormat . 7-32

Data Conversion

A
Data Conversion Rules . A-2

Array Formatting Flags . A-12

Data Conversion Flags . A-14
CoerceNumericToType . A-14
InputDateFormat . A-15
OutputAsDate As Boolean . A-16
DateBias As Long . A-16

Utility Library

B
Referencing Utility Classes . B-2

Utility Library Classes . B-3
Class MWUtil . B-3
Class MWFlags . B-10
Class MWStruct . B-16
Class MWField . B-24
Class MWComplex . B-25
Class MWSparse . B-27

x Contents

Class MWArg . B-30

Enumerations . B-32
Enum mwArrayFormat . B-32
Enum mwDataType . B-32
Enum mwDateFormat . B-33

Troubleshooting

C

Examples

D
Magic Square Example . D-2

Using Load and Save . D-2

Programming . D-2

The MCR User Data Interface . D-2

Calling a MATLAB Function from Microsoft®
Excel® . D-2

Using Multiple Files and Variable Arguments D-3

Creating a Comprehensive Microsoft® Excel® Add-In:
Spectral Analysis . D-3

Utility Library Classes for COM Components D-3

xi

Index

xii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Before You Use MATLAB® Builder EX” on page 1-4

• “Deploying an Excel Add-in Component Using the Magic Square Example”
on page 1-8

• “Next Steps” on page 1-20

1 Getting Started

Product Overview

In this section...

“MATLAB® Compiler Extension” on page 1-2

“About Component Object Model (COM)” on page 1-2

“Limitations of Support” on page 1-3

MATLAB Compiler Extension
MATLAB® Builder™ EX is an extension to MATLAB® Compiler™. You
use the builder to package MATLAB® functions so that Microsoft® Excel®

consumers can access them from Excel®. The builder converts MATLAB
functions to methods of a class that you define. From this class, the builder
creates components.

MATLAB Builder EX components are Microsoft® COM objects that are
accessible from Microsoft Excel through Visual Basic® for Applications
(VBA). MATLAB Builder EX integrates the COM wrapper with the MATLAB
Compiler-generated VBA code, saving you considerable development
resources and time.

When you package and distribute an application that uses your component,
include supporting files generated by MATLAB Builder EX. Include the
MATLAB Compiler Runtime (MCR), which gives you access to an entire
library of MATLAB functions within one file.

For information about how MATLAB® Compiler works, see “The MATLAB®

Compiler Build Process” on page 1-13.

About Component Object Model (COM)
COM is an acronym for Component Object Model, which is a Microsoft®

binary standard for object interoperability. COM components use a common
integration architecture that provides a consistent model across multiple
applications. All Microsoft Office applications support COM add-ins.

Each COM object exposes a class to the Visual Basic® programming
environment. The class contains a set of functions called methods. These

1-2

Product Overview

methods correspond to the original MATLAB functions included in the project.
The COM components created by MATLAB Builder EX contain a single class.
This class provides the interface to the MATLAB functions that you add to the
class at build time. The COM component provides a set of methods that wrap
the MATLAB code and a DLL file.

Limitations of Support
MATLAB (MCOS) objects are not supported as inputs or outputs for compiled
or deployed functions with MATLAB Builder EX.

1-3

1 Getting Started

Before You Use MATLAB Builder EX

In this section...

“Your Role in the Deployment Process” on page 1-4

“What You Need to Know” on page 1-6

“Install Required Products” on page 1-7

“Select Your C or C++ Compiler with mbuild -setup” on page 1-7

Your Role in the Deployment Process
The table Application Deployment Roles, Goals, and Tasks on page 1-5
describes the different roles, or jobs, that MATLAB Builder EX users typically
perform. It also describes tasks they would most likely perform when running
the examples in this documentation.

1-4

Before You Use MATLAB® Builder™ EX

Application Deployment Roles, Goals, and Tasks

Role Goals Task To Achieve Goal

MATLAB programmer • Understand the
end-user business
requirements and
the mathematical
models that support
them.

• Build an Microsoft
Excel add-in with
MATLAB tools
(usually with
support from a
Microsoft® Visual
Basic® programmer).

• Package the
component for
distribution to
customers.

• Pass the packaged
component to the
Microsoft Visual
Basic programmer
for rollout and
further integration
into the end-user
environment.

See “Magic Square
Example: MATLAB
Programmer Tasks” on
page 1-8.

Microsoft Visual Basic
programmer

• Write VB/VBA code
to complement
or augment the
Excel Add-in built
by the MATLAB
programmer.

• Roll out the packaged
component and
integrate it into

See “Magic Square
Example: Microsoft®

Visual Basic
Programmer Tasks”
on page 1-16.

1-5

1 Getting Started

Application Deployment Roles, Goals, and Tasks (Continued)

Role Goals Task To Achieve Goal

the end-user
environment.

• Use the component
in enterprise
applications. Add
and modify code as
needed.

• Verify that the
final application
executes reliably
in the end-user
environment.

External user Execute the solution
created by MATLAB
and Microsoft Visual
Basic programmers.

Execute the Microsoft
Excel add-in or use
the add-in as part of a
larger-scale deployed
application (outside the
scope of this document).

What You Need to Know
To use the MATLAB Builder EX product, specific requirements exist for each
user role.

Role Requirements

MATLAB programmer • A basic knowledge of MATLAB,
and how to work with:

- MATLAB data types

- MATLAB structures

Microsoft Visual Basic programmer Exposure to Microsoft Visual Basic
programming language

1-6

Before You Use MATLAB® Builder™ EX

Install Required Products
Install the following products to run the example described in this chapter:

• MATLAB

• MATLAB Compiler

• MATLAB Builder EX

• A supported C or C++ compiler

For more information about product installation and requirements, see
MATLAB Compiler “Installation and Configuration”.

Select Your C or C++ Compiler with mbuild -setup
The first time you use MATLAB Compiler, after starting MATLAB, run the
following command:

mbuild -setup

For more information about mbuild -setup, see “Installation and
Configuration”.

If you need information about writing MATLAB files, see MATLAB
Programming, which is part of MATLAB documentation.

1-7

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

Deploying an Excel Add-in Component Using the Magic
Square Example

In this section...

“About This Example” on page 1-8

“Magic Square Example: MATLAB Programmer Tasks” on page 1-8

“Using the Command Line Interface” on page 1-15

“Magic Square Example: Microsoft® Visual Basic Programmer Tasks” on
page 1-16

About This Example
This example shows you how to transform a MATLAB function into a
deployable MATLAB Builder EX add-in component.

The mymagic function wraps a MATLAB function, magic, which computes a
magic square. A magic square is a matrix containing any number of rows.
These rows, added horizontally and vertically, equal the same value.

Using MATLAB Builder EX, you deploy the mymagic function as a component
by adding it to the xlmagicclass class, along with other files you need to
deploy your application.

This example uses the deploytool GUI. If you want to use mcc, see the mcc
reference page for complete reference information.

Magic Square Example: MATLAB Programmer Tasks
The MATLAB programmer usually performs the following tasks.

1-8

Deploying an Excel Add-in Component Using the Magic Square Example

Key Tasks for the MATLAB Programmer

Task Reference

1. Start the product. “Starting the Deployment Tool” on
page 1-9

2. Prepare to run the example by
copying the MATLAB example files
into a work folder.

“Copying the Example Files” on page
1-9

3. Verify that the MATLAB code is
suitable for deployment.

“Testing the MATLAB File You
Want to Deploy” on page 1-10

4. Create a Microsoft Excel add-in
component (encapsulating your
MATLAB code in a COM wrapper)
by running the Build function in
deploytool.

“Building Your Component” on page
1-11

5. Prepare to run the Packaging
Tool by determining what additional
files to include with the deployed
component.

“Packaging Your Component
(Optional)” on page 1-15

6. Copy the output from the
Packaging Tool (the distrib folder).

“Copying the Package You Created”
on page 1-15

Starting the Deployment Tool
1 Start MATLAB.

2 Type deploytool at the MATLAB command prompt and press Enter. The
deploytool GUI opens.

Copying the Example Files
Prepare to run the example by copying needed files into your work area as
follows:

1 Navigate to matlabroot\toolbox\matlabxl\examples\xlmagic.

1-9

cd ([matlabroot '/toolbox/matlabxl/examples/xlmagic'])

1 Getting Started

Tip matlabroot is the MATLAB root folder (installation location of
MATLAB). To find the value of this variable on your system, type
matlabroot at a MATLAB command prompt.

2 Copy the xlmagic folder to a work area, for example,
D:\matlabxl_examples. Avoid using spaces in your folder
names. The example files now reside in D:\matlabxl_examples\xlmagic.

3 Using a system command prompt, navigate to
D:\matlabxl_examples\xlmagic by switching to the D: drive and entering
cd \matlabxl_examples\xlmagic.

Testing the MATLAB File You Want to Deploy
In this example, you test a MATLAB file (mymagic.m) containing the
predefined MATLAB function magic. You test to have a baseline to compare
to the results of the function when it is ready to deploy.

1 Using MATLAB, locate the mymagic.m file at
D:\matlabxl_examples\xlmagic. The contents of the file are as follows:

function y = mymagic(x)
%MYMAGIC Magic square of size x.
% Y = MYMAGIC(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder EX product.

% Copyright 2001-2007 The MathWorks, Inc.
% $Revision: 1.1.4.67 $ $Date: 2010/01/04 11:23:07 $

y = magic(x)

2 At the MATLAB command prompt, enter mymagic(5). View the resulting
output, which appears as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3

1-10

Deploying an Excel Add-in Component Using the Magic Square Example

11 18 25 2 9

Building Your Component
You create an Excel Add-in component by using the Deployment Tool GUI to
build a COM wrapper and VB class. This wrapper and class wrap around the
sample MATLAB code discussed in “Testing the MATLAB File You Want to
Deploy” on page 1-10.

Use the following information when creating your component as you work
through this example:

Component Name xlmagic

File to compile mymagic.m

Class Name xlmagicclass

1 Start MATLAB.

2 Type deploytool at the command prompt and press Enter. The
deploytool GUI opens.

3 Create a deployment project using the Deployment Project dialog:

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Target drop-down
menu.

d Click OK.

1-11

1 Getting Started

Creating an Excel Add-In Project

4 On the Build tab:

• If you are building an Excel Add-In, rename the default class, Class1.
Right-click and select Rename Class. Type the name of the class in the
Class Name field, designated by the letter “c”:

For this class, add files you want to compile by clicking Add files. To
add another class, click Add class.

Note You may optionally add supporting files. For examples of these
files, see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

a Click Add files/directories

b Click Open to select the file or files.

5 When you complete your changes, click the Build button ().

1-12

Deploying an Excel Add-in Component Using the Magic Square Example

The MATLAB Compiler Build Process
To generate and package an application, the user:

1 Writes an application or component in MATLAB

2 Invokes the MATLAB Compiler, which:

a Examines the input MATLAB files and the external dependency
database to determine the complete list of all functions used by the
application or component. As part of this process, MATLAB Compiler
determines which files are not able to be compiled and automatically
excludes them.

b Determines which functions are to be made publicly visible (for example,
those that can be called from another product or environment).

c Generates the appropriate interface code files based on the public
function list and the complete function list from the preceding steps. The
interface code generated is also dependent on what target the user wants
to create (for example, a Java™ component, a standalone executable, or
a Microsoft Excel add-in).

d Packages compilable functions into a CTF archive, creating a file on the
user’s disk. This archive is embedded by default in the binary executable.

e Optionally, invokes target specific compiler to generate a binary
application or component from the files in C and the interface code
libraries provided by The MathWorks.

3 Locates the install package for the MATLAB Compiler Runtime (MCR).

4 Collects together the binary, the CTF archive, and the MCR installer (along
with other optional, user-specified files) for the user.

The deployment GUI (deploytool) automates many of the steps in the
process for user convenience.

1-13

1 Getting Started

1-14

Deploying an Excel Add-in Component Using the Magic Square Example

Packaging Your Component (Optional)
Bundling the Excel add-in component with additional files you distribute
to consumers is referred to as packaging. You perform this step using the
packaging function of deploytool. To create a shared component and want to
include additional code with the component, perform this task. Alternately,
copy the contents of the distrib folder and the MCR Installer to a local
folder of your choice.

1 On the Package tab, add the MATLAB Compiler Runtime (the MCR) by
clicking Add MCR.

2 Next, add others files useful for end users. The readme.txt file contains
important information about others files useful for end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 On Windows®, the package is a self-extracting executable. On platforms
other than Windows, it is a .zip file. Verify that the contents of the
distrib folder contains the files you specified.

Note When the self-extracting executable is uncompressed on a system,
VCREDSIT_X86 is installed. VCREDSIT_X86 installs run-time components
of Microsoft Visual C++ libraries necessary for running Visual C++
applications.

Copying the Package You Created
Copy the package you created from the distrib folder to the local folder of
your choice or send them directly to the Microsoft Visual Basic programmer.

Using the Command Line Interface
You can use the command line to build components using the mcc command.
You can also start the Deployment Tool GUI from the command line. See the
mcc and deploytool reference pages for more details.

1-15

1 Getting Started

Magic Square Example: Microsoft Visual Basic
Programmer Tasks
The Microsoft Visual Basic programmer performs these tasks.

Key Tasks for the Microsoft Visual Basic Programmer

Task Reference

1. Ensure that you have the needed
files from the MATLAB programmer
before proceeding.

“Gathering Files Necessary for
Deployment” on page 1-16

2. Test the newly created Microsoft
Visual Basic code to ensure that it
produces the same results as your
MATLAB code.

“Testing the Component” on page
1-16

3. Create the Microsoft Excel add-in
and prepare it for deployment to
your end users.

“Deploying the Microsoft® Excel
Add-In” on page 1-18

4. Distribute the add-in to your end
users.

“Distributing the Component to End
Users” on page 1-19

5. Use the Excel Add-In “Using the Excel Add-In” on page
1-19

Gathering Files Necessary for Deployment
Before beginning, verify that you have access to the following files, created
by the MATLAB programmer in “Copying the Package You Created” on page
1-15. Customers who do not have a copy of MATLAB installed need these files:

• MCR Installer. For locations of all MCR Installers, run the mcrinstaller
command.

• readme.txt

Testing the Component
After you build a component, test your software by importing the VBA file
(VBA files have .bas extensions) into the Microsoft Excel Visual Basic Editor.

1-16

Deploying an Excel Add-in Component Using the Magic Square Example

Invoke one of the functions from the Excel worksheet. To import the VBA code
into the Excel Visual Basic Editor:

1 Open Excel

2 Do one of the following:

• If you use Microsoft Office 2007, click Developer > Macros.

• If you do not use Microsoft Office 2007, click Tools > Macros > Macro.

Tip You may need to enable the Developer menu item before performing
this step. To do this:

a Click the Microsoft Office Excel 2007 ribbon.

b Click Excel Options.

c In the Top Options for Working With Excel area, select Show
Developer tab in the Ribbon.

3 From the Visual Basic Editor, select File > Import and select the created
VBA file from the <project_dir>\distrib folder.

The Visual Basic module created contains the necessary initialization code
and a VBA formula function for each MATLAB function processed. Each
supplied formula function wraps a call to the respective compiled function in a
format accessed from a cell in an Excel worksheet. The function takes a list
of inputs corresponding to the inputs of the original MATLAB function and
returns a single output. This output corresponds to the first output argument.

You can use formula functions of this type to access a function of one or
more inputs that returns a single scalar value. When you require multiple
outputs or outputs representing ranges of data, you need a more general
Visual Basic subroutine. For details about integrating MATLAB Builder
EX components into Microsoft Excel via Visual Basic for Applications, see
Chapter 3, “Programming with MATLAB® Builder EX ”.

1-17

1 Getting Started

Deploying the Microsoft Excel Add-In
After you create and test your component, create an Excel add-in (.xla) from
the VBA code generated by MATLAB Builder EX. Save the worksheet file as
an .xla file to the <project_dir>\distrib folder.

Note You must have administrator privileges to build and deploy Excel
Add-ins.

For more information about creating an Excel Add-in, refer to the Excel
documentation on creating a .xla file.

1 Start Excel.

2 Do one of the following:

• If you use Microsoft Office 2007, click Developer > Visual Basic.

• If you do not use Microsoft Office 2007, click Tools > Macro > Visual
Basic Editor.

Tip You may need to enable the Developer menu item before performing
this step. To do this:

a Click the Microsoft Office Excel 2007 ribbon.

b Click Excel Options.

c In the Top Options for Working With Excel area, select Show
Developer tab in the Ribbon.

Select Tools > Macros > Visual Basic Editor.

3 In the Microsoft Visual Basic window, select File > Import.

4 Select VBA file (.bas) from the <projectdir>distrib folder.

5 Close the Visual Basic Editor.

6 From the Excel worksheet window, select File > Save As.

1-18

Deploying an Excel Add-in Component Using the Magic Square Example

7 Set Save as to Microsoft Excel add-in (*.xla).

8 Save the .xla file to <projectdir>\distrib.

You can also deploy files in default Excel file format and *.bas formats. To
deploy in default Excel file format, follow the previous steps but change the
Save as type in step 7 to the default Excel file format. To deploy as VBA
code, follow steps 1–4 only.

Distributing the Component to End Users
If you bundled the component as a self-extracting executable, paste it in a
folder on the development machine, and run it. If you are using a .zip file
bundled with WinZip, unzip it, and extract the contents to the development
machine.

Using the Excel Add-In
To use the Excel add-ins, perform the steps in the following table.

Using Excel Add-Ins with
Microsoft Excel before Office
2007

Using Excel Add-Ins with
Microsoft Excel Office 2007

1. Start Excel. 1. Open the Microsoft Office Excel
2007 ribbon, and click Excel
Options.

2. Select Tools > Add-Ins. 2. In the left pane of the Excel
Options dialog box, click Add-Ins.

3. Select the desired .xla file. 3. Next to the Excel Add-ins
drop-down box, click Go.

4. Select the Add-ins you want to
enable, and click OK.

1-19

http://www.winzip.com

1 Getting Started

Next Steps
After you create and distribute the initial add-in, continue to enhance it.
The following topics detail some of the more common tasks you perform as
you develop your application.

To: See...

Write Microsoft Visual Basic
applications that can scale your
MATLAB code applications in
enterprise computing environments

Chapter 3, “Programming with
MATLAB® Builder EX ”

Learn about sample applications
that access methods developed in
MATLAB

Chapter 4, “Usage Examples”

Learn about and Install the Function
Wizard interface

Chapter 5, “Function Wizard”

Program with utility classes created
expressly for Microsoft COM
components

Chapter 7, “Utility Library for
Microsoft COM Components”

1-20

2

Writing Deployable
MATLAB Code

• “The MATLAB Application Deployment Products” on page 2-2

• “Building Your Application with the Application Deployment Products and
the Deployment Tool” on page 2-4

• “Guidelines for Writing Deployable MATLAB Code” on page 2-10

• “Working with MATLAB Data Files Using Load and Save” on page 2-14

2 Writing Deployable MATLAB® Code

The MATLAB Application Deployment Products

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a

component that is given to the

business service developer
MATLAB

Programmer

The following tables summarizes the target applications supported by each
product.:

The MATLAB Suite of Application Deployment Products

Product Target Create
Standalone
Executables?

Create
Function
Libraries?

Create
Applications
with
Graphics?

Create Web
Applications?

MATLAB
Compiler

C and C++
standalones
and libraries

Yes Yes Yes No

MATLAB
Builder NE

C# .NET
components
Visual
Basic COM
components

No Yes Yes Yes

MATLAB
Builder JA

Java
components

No Yes Yes Yes

MATLAB
Builder EX

Microsoft
Excel add-ins

No Yes Yes No

2-2

The MATLAB® Application Deployment Products

The MATLAB® Application Deployment Products

Each of the builder products uses the MATLAB Compiler core code to create
deployable components.

2-3

2 Writing Deployable MATLAB® Code

Building Your Application with the Application Deployment
Products and the Deployment Tool

In this section...

“What Is the Difference Between the Deployment Tool and the mcc
Command Line?” on page 2-4

“How Does MATLAB® Compiler Software Build My Application?” on page
2-4

“What You Should Know About the Dependency Analysis Function
(depfun)” on page 2-5

“Compiling MEX-Files, DLLs, or Shared Libraries” on page 2-6

“The Role of the Component Technology File (CTF Archive)” on page 2-7

What Is the Difference Between the Deployment Tool
and the mcc Command Line?
Using the Deployment Tool (deploytool) GUI, you perform any function you
would invoke using the MATLAB Compiler mcc command-line interface. The
Deployment Tool interactive menus and dialogs build mcc commands that are
customized to your specification. As such, your MATLAB code is processed
the same way as if you were compiling it using mcc.

Using the Deployment Tool, you:

• Perform related deployment tasks with a single intuitive GUI.

• Maintain related information in a convenient project file. Your project
state persists between sessions. Your previous project loads automatically
when the Deployment Tool starts. You load previously stored compiler
projects from a prepopulated menu.

• Package applications for distribution.

How Does MATLAB Compiler Software Build My
Application?
MATLAB Compiler software:

2-4

Building Your Application with the Application Deployment Products and the Deployment Tool

1 Parses command-line arguments and classifies by type the files you provide.

2 Analyzes files for dependencies using the Dependency Analysis Function
(depfun). Dependencies affect deployability and originate from file
contents—functions called by the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

• File deployability — Whether the file is deployable outside of MATLAB
For more information about depfun, see “What You Should Know About
the Dependency Analysis Function (depfun)” on page 2-5.

3 Validates MEX-files. In particular, mexFunction entry points are verified).
For more details about MEX-file processing, see “Compiling MEX-Files,
DLLs, or Shared Libraries” on page 2-6.

4 Creates a CTF archive from the input files and their dependencies.
For more details about CTF archives see “The Role of the Component
Technology File (CTF Archive)” on page 2-7.

5 Generates target-specific wrapper code. For example, the wrapper for a C
main function is very different than the wrapper for a Java interface class.

6 Invokes a third-party target-specific compiler to create the appropriate
binary software component (a standalone executable, a Java JAR file,
and so on).

For details about how MATLAB Compiler software builds your deployable
component, see “The MATLAB® Compiler Build Process” on page 1-13.

What You Should Know About the Dependency
Analysis Function (depfun)
MATLAB Compiler uses a dependency analysis function (depfun) to
determine the list of necessary files to include in the CTF package. In some
cases, this process includes an large number of files. This is often true when
MATLAB object classes exist in the compilation and depfun cannot resolve
overloaded methods at compile time. Dependency analysis also processes
include/exclude files on each pass (see the mcc flag “-a Add to Archive”).

2-5

2 Writing Deployable MATLAB® Code

Tip To improve compile time performance and lessen application size, prune
the path with “-N Clear Path”, “-p Add Directory to Path”, or by specifying
Toolboxes on Path in the deploytool Settings

depfun searches for executable content such as:

• MATLAB files

• P-files

• Java classes and .jar files

• .fig files

• MEX-files

depfun does not search for data files of any kind (except MAT files). You
must manually include data files.

Compiling MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure
that depfun can find them—doing so allows you to avoid many common
compilation problems. In particular, note that:

• depfun cannot examine MEX-files, DLLs, or shared libraries to determine
their dependencies. Explicitly include all binaries these files require
either with the mcc -a option or the options on the Advanced tab in the
Deployment Tool under Settings.

• If you have any doubts that depfun can find a MATLAB function called by
a MEX-file, DLL, or shared library—manually include it. Do this with
either the mcc -a option or by using the options on the Advanced tab in
the Deployment Tool under Settings.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

2-6

Building Your Application with the Application Deployment Products and the Deployment Tool

The Role of the Component Technology File (CTF
Archive)
Each application or shared library produced by MATLAB Compiler has an
associated Component Technology File (CTF) archive. The archive contains
all the MATLAB based content (MATLAB files, MEX-files, and so on)
associated with the component.

MATLAB Compiler also embeds a CTF) archive in each generated binary.
The CTF houses all deployable files. All MATLAB files encrypt in the CTF
archive using the Advanced Encryption Standard (AES) cryptosystem.

If you choose the extract the CTF archive as a separate file the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “Overriding Default CTF Archive
Embedding Using the MCR
Component Cache”

MATLAB Builder NE “Overriding Default CTF Archive
Embedding for Components Using
the MCR Component Cache”

MATLAB Builder JA “Using MCR Component Cache and
MWComponentOptions”

MATLAB Builder EX “Overriding Default CTF Archive
Embedding for Components Using
the MCR Component Cache” on page
3-26

2-7

2 Writing Deployable MATLAB® Code

2-8

Building Your Application with the Application Deployment Products and the Deployment Tool

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel
components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deleted the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

2-9

2 Writing Deployable MATLAB® Code

Guidelines for Writing Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on
page 2-10

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 2-11

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 2-11

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 2-12

“Do Not Create or Use Nonconstant Static State Variables” on page 2-12

Compiled Applications Do Not Process MATLAB Files
at Runtime
The MATLAB Compiler was designed so that you can deploy locked down
functionality. Deployable MATLAB files are suspended or frozen at the
time MATLAB Compiler encrypts them—they do not change from that point
onward. This does not mean that you cannot deploy a flexible application—it
means that you must design your application with flexibility in mind. If you
want the end user to be able to choose between two different methods, for
example, they both must be compiled in.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in

2-10

Guidelines for Writing Deployable MATLAB® Code

deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic runtime
processing, your end-users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many programmers are prone
to this behavior since it mimics the actions they usually perform on the
command line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See the next section for details.

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

2-11

2 Writing Deployable MATLAB® Code

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

For an example of using isdeployed, see “Passing Arguments to and from
a Standalone Application”.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

• Static variables in MEX-files

• Static variables in Java code

2-12

Guidelines for Writing Deployable MATLAB® Code

The state of these variables is persistent and shared with everything in the
process.

Persistent variables can cause problems because the MCR process runs in a
single thread. You cannot load more than one of these non-constant, static
variables into the same process. In addition, these static variables do not
work well in multithreaded applications.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX customers.
When programming with Microsoft Excel, you can assign global variables to
large matrices that persist between calls.

2-13

2 Writing Deployable MATLAB® Code

Working with MATLAB Data Files Using Load and Save
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by full path name or relative to ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “The Role of the Component
Technology File (CTF Archive)” on page 2-7.

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data
for Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata/extra_data.mat

• ../externdata/extern_data.mat

Compile ex_loadsave.m with the following mcc command:

mcc -mvC ex_loadsave.m -a 'user_data.mat' -a
'./userdata/extra_data.mat' -a
'../externdata/extern_data.mat'

ex_loadsave.m

function ex_loadsave

2-14

Working with MATLAB Data Files Using Load and Save

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata/extra_data.mat

% ../externdata/extern_data.mat

%

% Compile this example with the mcc command:

% mcc -mC ex_loadsave.m -a 'user_data.mat' -a

% './userdata/extra_data.mat'

% -a '../externdata/extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% ./output/saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

2-15

2 Writing Deployable MATLAB® Code

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

result = data1*data2;

disp('A * B = ');

disp(result);

2-16

Working with MATLAB Data Files Using Load and Save

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

2-17

2 Writing Deployable MATLAB® Code

2-18

3

Programming with
MATLAB Builder EX

• “Overview of the Integration Process ” on page 3-2

• “When to Use a Formula Function or a Subroutine” on page 3-3

• “Initializing MATLAB® Builder EX Libraries with Microsoft® Excel” on
page 3-4

• “Creating an Instance of a Class” on page 3-6

• “Calling the Methods of a Class Instance” on page 3-9

• “Processing varargin and varargout Arguments” on page 3-11

• “Calling Compiled MATLAB Functions from Microsoft® Excel” on page 3-14

• “Handling Errors During a Method Call” on page 3-17

• “Modifying Flags” on page 3-18

• “Improving Data Access Using the MCR User Data Interface, COM
Components, and MATLAB® Builder EX” on page 3-24

• “Overriding Default CTF Archive Embedding for Components Using the
MCR Component Cache” on page 3-26

3 Programming with MATLAB® Builder™ EX

Overview of the Integration Process
Each MATLAB Builder EX component is built as a COM object that you can
access from Microsoft Excel through Microsoft Visual Basic for Applications
(VBA). This topic provides general information on how to integrate the
MATLAB Builder EX components into Excel using the VBA programming
environment. It assumes that you have a working knowledge of VBA and is
not intended to discuss how to program in Visual Basic. Refer to the VBA
documentation provided with Excel for general programming information.

You can integrate the MATLAB Builder EX components into a VBA project by
creating a simple code module with functions and/or subroutines that load the
necessary components, call methods as needed, and process any errors. In
general, you need to address the following items in any code written to use
the MATLAB Builder EX components:

• “When to Use a Formula Function or a Subroutine” on page 3-3

• “Initializing MATLAB® Builder EX Libraries with Microsoft® Excel” on
page 3-4

• “Creating an Instance of a Class” on page 3-6

• “Calling the Methods of a Class Instance” on page 3-9

• “Processing varargin and varargout Arguments” on page 3-11

• “Handling Errors During a Method Call” on page 3-17

• “Modifying Flags” on page 3-18

Note All code samples in these topics are for illustration purposes and
reference a hypothetical class named myclass contained in a component
named mycomponent with a version number of 1.0.

3-2

When to Use a Formula Function or a Subroutine

When to Use a Formula Function or a Subroutine
VBA provides two basic procedure types: functions and subroutines.

You access a VBA function directly from a cell in a worksheet as a formula
function. Use function procedures when the original MATLAB function takes
one or more inputs and returns one scalar output.

You access a subroutine as a general macro. Use a subroutine procedure
when the original MATLAB function returns an array of values or multiple
outputs because you need to map these outputs into multiple cells/ranges
in the worksheet.

When you create a component, MATLAB Builder EX produces a VBA module
(.bas file). This file contains simple call wrappers, each implemented as a
function procedure for each method of the class.

3-3

3 Programming with MATLAB® Builder™ EX

Initializing MATLAB Builder EX Libraries with Microsoft
Excel

Before you use any MATLAB Builder EX component, initialize the supporting
libraries with the current instance of Microsoft Excel. Do this once for an
Excel session that uses the MATLAB Builder EX components.

To do this initialization, call the utility library function MWInitApplication,
which is a member of the MWUtil class. This class is part of the MWComUtil
library. See “Utility Library Classes” on page B-3 for a detailed discussion of
the functionality provided with this library.

One way to add this initialization code into a VBA module is to provide
a subroutine that does the initialization once, and simply exits for all
subsequent calls. The following Microsoft Visual Basic code sample initializes
the libraries with the current instance of Excel. A global variable of type
Object named MCLUtil holds an instance of the MWUtil class, and another
global variable of type Boolean named bModuleInitialized stores the
status of the initialization process. The private subroutine InitModule()
creates an instance of the MWComUtil class and calls the MWInitApplication
method with an argument of Application. Once this function succeeds, all
subsequent calls exit without reinitializing.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

3-4

Initializing MATLAB® Builder™ EX Libraries with Microsoft® Excel®

This code is similar to the default initialization code generated in the VBA
module created when the component is built. Each function that uses
MATLAB Builder EX components can include a call to InitModule at the
beginning to ensure that the initialization always gets performed as needed.

3-5

3 Programming with MATLAB® Builder™ EX

Creating an Instance of a Class

In this section...

“Overview” on page 3-6

“CreateObject Function” on page 3-6

“New Operator” on page 3-7

“How the MCR Is Shared Among Classes” on page 3-8

Overview
Before calling a class method (compiled MATLAB function), you must
create an instance of the class that contains the method. VBA provides two
techniques for doing this:

• CreateObject function

• New operator

CreateObject Function
This method uses the Microsoft Visual Basic application programming
interface (API) CreateObject function to create an instance of the class.
To use this method, Dim a variable of type Object to hold a reference to the
class instance and call CreateObject using the class programmatic identifier
(ProgID) as an argument, as shown in the next example:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

3-6

Creating an Instance of a Class

New Operator
This method uses the Visual Basic New operator on a variable explicitly
dimensioned as the class to be created. Before using this method, you must
reference the type library containing the class in the current VBA project. Do
this by selecting the Tools menu from the Visual Basic Editor, and then
selecting References to display the Available References list. From this
list, select the necessary type library.

The following example illustrates using the New operator to create a class
instance. It assumes that you have selected mycomponent 1.0 Type
Library from the Available References list before calling this function.

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance can be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that can occur if other libraries in the current project
contain types named myclass.

Both methods are equivalent in functionality. The first method does not
require a reference to the type library in the VBA project, while the second
results in faster code execution. The second method has the added advantage
of enabling the Auto-List-Members and Auto-Quick-Info capabilities of
the Microsoft Visual Basic editor to work with your classes. The default
function wrappers created with each built component all use the first method
for object creation.

In the previous two examples, the class instance used to make the method
call was a local variable of the procedure. This creates and destroys a new
class instance for each call. An alternative approach is to declare one single

3-7

3 Programming with MATLAB® Builder™ EX

module-scoped class instance that is reused by all function calls, as in the
initialization code of the previous example.

The following example illustrates this technique with the second method:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

How the MCR Is Shared Among Classes
MATLAB Builder EX creates a single MATLAB Compiler Runtime (MCR)
when the first Microsoft COM class is instantiated in an application. This
MCR is reused and shared among all subsequent class instances within the
component, resulting in more efficient memory usage and eliminating the
MCR startup cost in each subsequent class instantiation.

All class instances share a single MATLAB workspace and share global
variables in the MATLAB files used to build the component. This makes
properties of a COM class behave as static properties instead of instance-wise
properties.

3-8

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance
After you have created a class instance, you can call the class methods
to access the compiled MATLAB functions. MATLAB Builder EX applies
a standard mapping from the original MATLAB function syntax to the
method’s argument list. See Chapter 7, “Utility Library for Microsoft COM
Components” for a detailed description of the mapping from MATLAB
functions to COM class method calls.

When a method has output arguments, the first argument is always nargout,
which is of type Long. This input parameter passes the normal MATLAB
nargout parameter to the compiled function and specifies how many outputs
are requested. Methods that do not have output arguments do not pass
a nargout argument. Following nargout are the output parameters listed
in the same order as they appear on the left side of the original MATLAB
function. Next come the input parameters listed in the same order as they
appear on the right side of the original MATLAB function. All input and
output arguments are typed as Variant, the default Visual Basic data type.

The Variant type can hold any of the basic VBA types, arrays of any type,
and object references. See “Data Conversion Rules ” on page A-2 for a detailed
description of how to convert Variant types of any basic type to and from
MATLAB data types. In general, you can supply any Visual Basic type as an
argument to a class method, with the exception of Visual Basic UDTs. You
can also pass Microsoft Excel Range objects directly as input and output
arguments.

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as
a single Variant. When an object type (like an Excel Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

The following examples illustrate the process of passing input and output
parameters from VBA to the MATLAB Builder EX component class methods.

The first example is a formula function that takes two inputs and returns one
output. This function dispatches the call to a class method that corresponds to
a MATLAB function of the form function y = foo(x1,x2).

3-9

3 Programming with MATLAB® Builder™ EX

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the same function as a subroutine and uses
Excel ranges for input and output.

Sub foo(Rout As Range, Rin1 As Range, Rin2 As Range)
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Rout,Rin1,Rin2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

3-10

Processing varargin and varargout Arguments

Processing varargin and varargout Arguments

In this section...

“Overview” on page 3-11

“Passing an Empty varargin from Microsoft® Visual Basic Code” on page
3-12

Overview
When varargin and/or varargout are present in the MATLAB function that
you are using for the Excel component, these parameters are added to the
argument list of the class method as the last input/output parameters in the
list. You can pass multiple arguments as a varargin array by creating a
Variant array, assigning each element of the array to the respective input
argument.

The following example creates a varargin array to call a method resulting
from a MATLAB function of the form y = foo(varargin):

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

3-11

3 Programming with MATLAB® Builder™ EX

The MWUtil class included in the MWComUtil utility library provides the
MWPack helper function to create varargin parameters. See “Utility Library
Classes” on page B-3 for more details.

The next example processes a varargout parameter into three separate Excel
Ranges. This function uses the MWUnpack function in the utility library. The
MATLAB function used is varargout = foo(x1,x2).

Sub foo(Rout1 As Range, Rout2 As Range, Rout3 As Range, _
Rin1 As Range, Rin2 As Range)

Dim aClass As Object
Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Rin1,Rin2)
Call aUtil.MWUnpack(v,0,True,Rout1,Rout2,Rout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Passing an Empty varargin from Microsoft Visual
Basic Code
In MATLAB, varargin inputs to functions are optional, and may be present
or omitted from the function call. However, from Microsoft Visual Basic,
function signatures are more strict—if varargin is present among the
MATLAB function inputs, the VBA call must include varargin, even if you
want it to be empty. To pass in an empty varargin, pass the Null variant,
which is converted to an empty MATLAB cell array when passed.

Example: Passing an Empty varargin from VBA Code
The following example illustrates how to pass the null variant in order to pass
an empty varargin:

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _

3-12

Processing varargin and varargout Arguments

x4 As Variant, x5 As Variant) As Variant
Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")

'Call aClass.foo(1,y,v)
Call aClass.foo(1,y,Null)

foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

3-13

3 Programming with MATLAB® Builder™ EX

Calling Compiled MATLAB Functions from Microsoft Excel
In order to call compiled MATLAB functions from within a Microsoft Excel
spreadsheet, perform the following from the Development and Deployment
machines, as specified.

Note in order for a function to be called using the Microsoft Excel function
syntax (=myfunction(input)), the MATLAB function must return a single
scalar output argument.

Perform the following steps on the Development machine:

1 Create the following MATLAB functions in three separate files named
doubleit.m, incrementit.m, and powerit.m, respectively:

function output = doubleit(input)
output = input * 2;

function output = incrementit(input1, input2)
output = input1 + input2;

function output = powerit(input1, input2)
output = power(input1, input2);

2 From the MATLAB Command Prompt, enter mbuild -setup and select a
Visual C++® compiler.

Note This procedure was tested using Microsoft Visual C++ 8.0.

3 Start the Deployment Tool by entering deploytool at the MATLAB
Command Prompt.

4 Use the following information as you work through this example using the
instructions in “Building Your Component” on page 1-11:

3-14

Calling Compiled MATLAB® Functions from Microsoft® Excel®

Project Name myexcelfunctions

Class Name myexcelfunctionsclass

File to compile doubleit.m incrementit.m
powerit.m

5 Package your component by following the instructions in “Packaging Your
Component (Optional)” on page 1-15.

Note You must have administrator privileges to build and deploy.

Perform the following steps on the Deployment machine:

1 Copy myexcelfunctions_pkg.exe to the deployment machine(s).
Copy the file to a standard place for use with Microsoft Excel,
such as Office_Installation_folder\Library\MATLAB where
Office_Installation_folder is a folder such as C:\Program
Files\Microsoft Office\OFFICE11.

2 Run myexcelfunctions_pkg.exe to extract the archive and register
myexcelfunctions_1_0.dll. If you have also included MCRInstaller.exe,
follow the prompts to install the MATLAB Compiler Runtime.

3 Start Microsoft Excel. The spreadsheet Book1 should be open by default.

4 In Excel, select Tools > Macro > Visual Basic Editor. The Microsoft
Visual Basic Editor starts.

5 In the Microsoft Visual Basic Editor, select File > Import File.

6 Browse to myexcelfunctions.bas, which was extracted from
myexcelfunctions_pkg.exe and click Open. In the Project Explorer,
Module1 appears under the Modules node beneath VBAProject
(Book1).

7 In the Microsoft Visual Basic Editor, select View > Microsoft Excel. You
can now use the doubleit, incrementit, and powerit functions in your
Book1 spreadsheet.

3-15

3 Programming with MATLAB® Builder™ EX

8 Test the functions, by doing the following:

a Enter =doubleit(2.5) in cell A1.

b Enter =incrementit(11,17) in cell A2.

c Enter =powerit(7,2) in cell A3.
You should see values 5, 28, and 49 in cells A1, A2, and A3 respectively.

9 To use the doubleit, powerit, and incrementit functions in all your new
Microsoft Excel spreadsheets, do the following:

a Select File > Save As.

b Change the Save as type option to .xlt (Template).

c Browse to the Office_Installation_folder\XLSTART folder.

d Save the file as Office_Installation_folder\XLSTART\Book.xlt.

Note Your Microsoft Excel Macro Security level must be set atMedium
or Low to save this template.

3-16

Handling Errors During a Method Call

Handling Errors During a Method Call
Errors that occur while creating a class instance or during a class method
create an exception in the current procedure. Microsoft Visual Basic provides
an exception handling capability through the On Error Goto <label>
statement, in which the program execution jumps to <label> when an error
occurs. (<label> must be located in the same procedure as the On Error
Goto statement). All errors are handled this way, including errors within
the original MATLAB code. An exception creates a Visual Basic ErrObject
object in the current context in a variable called Err. (See the Visual Basic for
Applications documentation for a detailed discussion on VBA error handling.)
All of the examples in this section illustrate the typical error trapping logic
used in function call wrappers for MATLAB Builder EX components.

3-17

3 Programming with MATLAB® Builder™ EX

Modifying Flags

In this section...

“Overview” on page 3-18

“Array Formatting Flags” on page 3-18

“Data Conversion Flags” on page 3-21

Overview
Each MATLAB Builder EX component exposes a single read/write property
named MWFlags of type MWFlags. The MWFlags property consists of two sets of
constants: array formatting flags and data conversion flags. Array formatting
flags affect the transformation of arrays, whereas data conversion flags deal
with type conversions of individual array elements.

The data conversion flags change selected behaviors of the data conversion
process from Variants to MATLAB types and vice versa. By default, the
MATLAB Builder EX components allow setting data conversion flags at
the class level through the MWFlags class property. This holds true for all
Visual Basic types, with the exception of the MATLAB Builder EX MWStruct,
MWField, MWComplex, MWSparse, and MWArg types. Each of these types exposes
its own MWFlags property and ignores the properties of the class whose method
is being called. The MWArg class is supplied specifically for the case when a
particular argument needs different settings from the default class properties.

This section provides a general discussion of how to set these flags and what
they do. See “Class MWFlags” on page B-10 for a detailed discussion of the
MWFlags type, as well as additional code samples.

Array Formatting Flags
Array formatting flags guide the data conversion to produce either a MATLAB
cell array or matrix from general Variant data on input or to produce an array
of Variants or a single Variant containing an array of a basic type on output.

The following examples assume that you have referenced the MWComUtil
library in the current project by selecting Tools > References and selecting
MWComUtil 7.5 Type Library from the list:

3-18

Modifying Flags

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11
x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

In addition, these examples assume you have referenced the COM object
created with Builder EX (mycomponent) as mentioned in “New Operator”
on page 3-7.

Here, two Variant variables, var1 and var2 are constructed with the same
numerical data, but internally they are structured differently: var1 is a
2-by-2 array of Variants with each element containing a 1-by-1 Double, while
var2 is a 1-by-1 Variant containing a 2-by-2 array of Doubles.

In MATLAB Builder EX , when using the default settings, both of these
arrays will be converted to 2-by-2 arrays of doubles. This does not follow the
general convention listed in COM VARIANT to the MATLAB Conversion
Rules. According to these rules, var1 converts to a 2-by-2 cell array with
each cell occupied by a 1-by-1 double, and var2 converts directly to a 2-by-2
double matrix.

3-19

3 Programming with MATLAB® Builder™ EX

The two arrays both convert to double matrices because the default value for
the InputArrayFormat flag is mwArrayFormatMatrix. The InputArrayFormat
flag controls how arrays of these two types are handled. This default is used
because array data originating from Excel ranges is always in the form of an
array of Variants (like var1 of the previous example), and MATLAB functions
most often deal with matrix arguments.

But what if you want a cell array? In this case, you set the InputArrayFormat
flag to mwArrayFormatCell. Do this by adding the following line after creating
the class and before the method call:

aClass.MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting this flag presents all array input to the compiled MATLAB function as
cell arrays.

Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

AutoResizeOutput is used for Excel Range objects passed directly as output
parameters. When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must be at least as
large as the output array or the data is truncated.

The TransposeOutput flag transposes all array output. This flag is useful
when dealing with MATLAB functions that output one-dimensional arrays.
By default, MATLAB realizes one-dimensional arrays as 1-by-n matrices (row
vectors) that become rows in an Excel worksheet.

You may prefer worksheet columns from row vector output. This example
auto-resizes and transposes an output range:

Sub foo(Rout As Range, Rin As Range)
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True

3-20

Modifying Flags

aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.foo(1,Rout,Rin)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Data Conversion Flags
Data conversion flags deal with type conversions of individual array elements.
The two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from VBA to MATLAB.
Consider the example:

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to var1, but this
may not be possible or desirable. In such a case set the CoerceNumericToType
flag to mwTypeDouble, causing the data converter to convert all numeric input
to double. In the previous example, place the following line after creating the
class and before calling the methods:

aClass.MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

3-21

3 Programming with MATLAB® Builder™ EX

The InputDateFormat flag controls how the VBA Date type is converted.
This example sends the current date and time as an input argument and
converts it to a string:

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg

Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set y1 = New MWArg
y1.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp.Value
Exit Sub

Handle_Error:

3-22

Modifying Flags

MsgBox(Err.Description)
End Sub

3-23

3 Programming with MATLAB® Builder™ EX

Improving Data Access Using the MCR User Data Interface,
COM Components, and MATLAB Builder EX

In this section...

“Overview” on page 3-24

“Code Snippets” on page 3-25

Overview
This feature provides a lightweight interface for easily accessing MCR data.
It allows data to be shared between an MCR instance, the MATLAB code
running on that MCR, and the wrapper code that created the MCR. Through
calls to the MCR User Data interface API, you access MCR data by creating
a per-MCR-instance associative array of mxArrays, consisting of a mapping
from string keys to mxArray values. Reasons for doing this include, but are
not limited to:

• You need to supply run-time configuration information to a client running
an application created with the Parallel Computing Toolbox. Configuration
information may be supplied (and change) on a per-execution basis. For
example, two instances of the same application may run simultaneously
with different configuration files.

• You want to initialize the MCR with constant values that can be accessed
by all your MATLAB applications.

• You want to set up a global workspace — a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

MATLAB Builder EX supports per-MCR instance state access through an
object-oriented API. Unlike MATLAB Compiler, access to per-MCR instance
state is optional, rather than on by default. You can access this state by
adding setmcruserdata.m and getmcruserdata.m to your deployment project
or by specifying them on the command line.

For more information, see the MATLAB Compiler User’s Guide.

3-24

Improving Data Access Using the MCR User Data Interface, COM Components, and MATLAB® Builder™ EX

Code Snippets
The following code snippets demonstrate storing and retrieving MCR state
while working with the MagicMatrix function.

MagicMatrix Function

function magicmatrix
key = 'MagicMatrix';
m = getmcruserdata(key);
disp(m);
m = m + 1;
setmcruserdata(key, m);

Building the MagicMatrix Component

mcc -v -B 'cexcel:MagicMatrixComponent,MagicMatrix,1.0' \
magicmatrix.m getmcruserdata setmcruserdata

Calling setmcruserdata and getmcruserdata

Function tryMcrUserData()

Dim r1 As Range
Set r1 = Range("A1:C3")
a = setmcruserdata("MagicMatrix", r1)
a = magicmatrix()
a = getmcruserdata("MagicMatrix")
Application.Worksheets("Sheet1").Range("A5:C7") = a

End Function

3-25

3 Programming with MATLAB® Builder™ EX

Overriding Default CTF Archive Embedding for Components
Using the MCR Component Cache

As of R2008b, CTF data is automatically embedded directly in MATLAB
Builder EX components by default. In order to extract the CTF archive
manually, you must build the component using the mcc-C option.

If you do not use the mcc-C option to specify that a separate CTF file is to be
generated, you can add environment variables to specify various options,
such as:

• Defining the location where you want the CTF archive to be extracted

• Adding diagnostic error printing options that can be utilized when
extracting the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Not applicable

MCR_CACHE_VERBOSE When set, this variable prints
details about the component
cache for diagnostic reasons.
This can be very helpful
if problems are encountered
during CTF archive extraction.

Not applicable

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable

3-26

Overriding Default CTF Archive Embedding for Components Using the MCR Component Cache

Environment Variable Purpose Notes

the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

Note If you run mcc specifying conflicting wrapper and target types, the CTF
will not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the CTF embedded in it, as if you had
specified a -C option to the command line.

Caution Do not extract the files within the.ctf file and place them
individually under version control. Since the .ctf file contains interdependent
MATLAB functions and data, the files within it must be accessed only by
accessing the .ctf file. For best results, place the entire .ctf file under
version control.

3-27

3 Programming with MATLAB® Builder™ EX

3-28

4

Usage Examples

• “Magic Square Example ” on page 4-2

• “Multiple Files and Variable Arguments Example” on page 4-6

• “Spectral Analysis Example” on page 4-12

Note You can also find usage examples on MATLAB Central. Set the Search
field to File Exchange and search for one or more of the following:

• InterpExcelDemo

• MatrixMathExcelDemo

• ExcelCurveFit

Note You must have administrator privileges to build and deploy Excel
Add-ins.

http://www.mathworks.com/matlabcentral/

4 Usage Examples

Magic Square Example

In this section...

“Overview” on page 4-2

“Creating the Project” on page 4-3

“Adding the MATLAB® Builder EX COM Function to Microsoft® Excel”
on page 4-3

“Output Magic Square Results to Microsoft® Excel” on page 4-3

“Transpose the Output” on page 4-4

“Resize the Output” on page 4-4

“Inspecting the Microsoft® Visual Basic Code” on page 4-5

Overview
The MATLAB file mymagic takes a single input, an integer, and creates
a magic square of that size.

The Microsoft Excel file mymagic.xls uses this function in three different
ways:

• “Output Magic Square Results to Microsoft® Excel” on page 4-3 calls the
function mymagic with a value of 4. The function returns a magic square of
size 4 and populates a range of Excel cells with that magic square.

• “Transpose the Output” on page 4-4 uses the transpose flag to transpose a
magic square of size 4.

• “Resize the Output” on page 4-4 resizes the output to a higher value and
moves its location within the Excel worksheet.

Note To get started, copy the distributed folder xlmagic from
matlabroot\toolbox\matlabxl\examples\xlmagic to myfiles\work.

4-2

Magic Square Example

Creating the Project

1 From the MATLAB command prompt, change folders to myfiles\work.

2 If you have not already done so, execute the following command in the
MATLAB prompt:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

3 Enter the deploytool command to open the Deployment Tool.

4 Use the following information as you work through this example using the
instructions in “Building Your Component” on page 1-11:

Project Name xlmagic

Class Name xlmagicclass

File to compile mymagic.m

Adding the MATLAB Builder EX COM Function to
Microsoft Excel

1 Start Microsoft Excel on your system.

2 Open the file myfiles\work\xlmagic\mymagic.xls.

Note If an Excel prompt says that this file contains macros, click Enable
Macros to run this example.

Output Magic Square Results to Microsoft Excel
From the Excel main window (not the Microsoft Visual Basic Editor), open
the Macro dialog box by pressing the Alt and F8 keys simultaneously, or by
selecting Tools > Macro > Macros.

4-3

http://www.mathworks.com/support/compilers/current_release/

4 Usage Examples

Select mymagic from the list and click Run. This procedure returns a magic
square of size 4 beginning in cell B2.

Transpose the Output
Reopen the Macro dialog box, select the mymagic_transpose macro and click
Run. This procedure returns a magic square of size 4 transposed, beginning
in cell B14.

Resize the Output
Reopen the Macro dialog box, select the mymagic_resize macro, and click
Run. This procedure returns a magic square of size 4 beginning in cell B32.

Change the value of 4 in cell A32 to a higher value and rerun this macro. A
magic square of the size you specified in cell A32 is returned, beginning in
cell B32.

4-4

Magic Square Example

Inspecting the Microsoft Visual Basic Code

1 From the Excel main window, select Tools > Macro > Visual Basic
Editor.

2 When the Visual Basic Editor opens, in the Project - VBAProject window,
double-click to expand VBAProject (mymagic.xls).

3 Expand the Modules folder and double-click the Module1 module.

This opens the VB Code window with the code for this project.

4-5

4 Usage Examples

Multiple Files and Variable Arguments Example

In this section...

“Overview” on page 4-6

“Creating the Project” on page 4-6

“Adding the MATLAB® Builder EX COM Function to Microsoft® Excel”
on page 4-7

“Calling myplot” on page 4-8

“Calling mysum Four Different Ways” on page 4-9

“myprimes Macro” on page 4-10

“Inspecting the Microsoft® Visual Basic Code” on page 4-11

Overview
The file, myplot, takes a single integer input and plots a line from 1 to that
number.

The file, mysum, takes an input of varargin of type integer, adds all the
numbers, and returns the result.

The file, myprimes, takes a single integer input n and returns all the prime
numbers less than or equal to n.

The Microsoft Excel file, xlmulti.xls, demonstrates these functions in
several ways.

Note To get started, copy the distributed folder xlmulti from
matlabroot\toolbox\matlabxl\examples\xlmulti to myfiles\work.

Creating the Project

1 From the MATLAB command prompt, change folders to myfiles\work.

4-6

Multiple Files and Variable Arguments Example

2 If you have not already done so, execute the following command at the
MATLAB prompt:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

3 While in MATLAB, issue the following command to open Deployment Tool:

deploytool

4 Use the following information as you work through this example using the
instructions in “Building Your Component” on page 1-11:

Project Name xlmulti

Class Name xlmulticlass

File to compile (in the xlmulti
folder ofmyfiles\work)

myplot.m myprimes.m mysum.m

Adding the MATLAB Builder EX COM Function to
Microsoft Excel

1 Start Microsoft Excel on your system.

2 Open the file myfiles\work\xlmulti\xlmulti.xls.

Note If an Excel prompt says that this file contains macros, click Enable
Macros to run this example.

The example appears as shown:

4-7

http://www.mathworks.com/support/compilers/current_release/

4 Usage Examples

Calling myplot
This illustration calls the function myplot with a value of 4. To execute the
function, make A7 (=myplot(4)) the active cell. Press F2 and then Enter.

4-8

Multiple Files and Variable Arguments Example

This procedure plots a line from 1 through 4 in a MATLAB Figure window.
This graphic can be manipulated similarly to the way one would manipulate
a figure in MATLAB. Some functionality, such as the ability to change line
style or color, is not available.

The calling cell contains 0 because the function does not return a value.

Calling mysum Four Different Ways
This illustration calls the function mysum in four different ways:

• The first (cell A14) takes the values 1 through 10, adds them, and returns
the result of 55 (=mysum(1,2,3,4,5,6,7,8,9,10)).

• The second (cell A19) takes a range object that is a range of cells
with the values 1 through 10, adds them, and returns the result of 55
(=mysum(B19:K19)).

• The third (cell A24) takes several range objects, adds them, and returns
the result of 120 (=mysum(B24:K24,B25:L25,B26:D26)). This illustration
demonstrates that the ranges do not need to be the same size and that all
the cells do not need a value.

• The fourth (cell A30) takes a combination of a range object and
explicitly stated values, adds them, and returns the result of 16
(=mysum(10,B30:D30)).

4-9

4 Usage Examples

This illustration runs when the Excel file is opened. To reactivate the
illustration, activate the appropriate cell. Then press F2 followed by Enter.

myprimes Macro
In this illustration, the macro myprimes calls the function myprimes.m with
an initial value of 10 in cell A42. The function returns all the prime numbers
less than 10 to cells B42 through E42.

To execute the macro, from the main Excel window (not the Visual Basic
Editor), open the Macro dialog box, by pressing the Alt and F8 keys
simultaneously, or by selecting Tools > Macro > Macros.

Select myprimes from the list and click Run.

4-10

Multiple Files and Variable Arguments Example

This function automatically resizes if the returned output is larger than the
output range specified. Change the value in cell A42 to a number larger than
10. Then rerun the macro. The output returns all prime numbers less than
the number you entered in cell A42.

Inspecting the Microsoft Visual Basic Code

1 On the Microsoft Excel main window, select Tools > Macro > Visual
Basic Editor.

2 On the Microsoft Visual Basic, in the Project - VBAProject window,
double-click to expand VBAProject (xlmulti.xls)

3 Expand the Modules folder and double-click the Module1 module. This
opens the VB Code window with the code for this project.

4-11

4 Usage Examples

Spectral Analysis Example

In this section...

“Overview” on page 4-12

“Building the Component” on page 4-13

“Integrating the Component Using VBA” on page 4-14

“Testing the Add-In” on page 4-26

“Packaging and Distributing the Add-In” on page 4-28

“Installing the Add-In” on page 4-29

Overview
This example illustrates the creation of a comprehensive Excel add-in to
perform spectral analysis. It requires knowledge of Visual Basic forms and
controls, as well as Excel workbook events. See the VBA documentation for a
complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density.

You develop the function so that you can invoke it from the Excel Tools menu
and can select input and output ranges through a GUI.

Creating the add-in requires four basic steps:

1 Build a standalone COM component from the MATLAB code.

2 Implement the necessary VBA code to collect input and dispatch the calls
to your component.

3 Create the GUI.

4-12

Spectral Analysis Example

4 Create an Excel add-in and package all necessary components for
application deployment.

Building the Component
Your component will have one class with two methods, computefft and
plotfft. The computefft method computes the FFT and power spectral
density of the input data and computes a vector of frequency points based
on the length of the data entered and the sampling interval. The plotfft
method performs the same operations as computefft, but also plots the
input data and the power spectral density in a MATLAB Figure window.
The MATLAB code for these two methods resides in two MATLAB files,
computefft.m and plotfft.m.

computefft.m:
function [fftdata, freq, powerspect] =

computefft(data, interval)
if (isempty(data))

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)

return;
end
t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on

4-13

4 Usage Examples

title('Time domain signal')
subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To proceed with the actual building of the component:

1 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

2 Use the following information as you work through this example using the
instructions in “Building Your Component” on page 1-11:

Setting Value

Component name Fourier

Class name Fourier

Project folder The name of your work folder followed by the
component name

Show verbose
output

Selected

Integrating the Component Using VBA
Having built your component, you can implement the necessary VBA code to
integrate it into Excel.

Selecting the Libraries
To open Excel and select the libraries you need to develop the add-in:

1 Start Excel on your system.

2 From the Excel main menu, select Tools > Macro > Visual Basic Editor.

4-14

http://www.mathworks.com/support/compilers/current_release/

Spectral Analysis Example

3 When the Visual Basic Editor starts, select Tools > References to open
the Project References dialog box.

4 Select Fourier 1.0 Type Library and MWComUtil 7.x Type Library
from the list.

Creating the Main VB Code Module for the Application. The add-in
requires some initialization code and some global variables to hold the
application’s state between function invocations. To achieve this, implement a
Visual Basic code module to manage these tasks:

1 Right-click the VBAProject item in the project window and select
Insert > Module.

A new module appears under Modules in the VBA Project.

2 In the module’s property page, set the Name property to FourierMain. See
the next figure.

4-15

4 Usage Examples

3 Enter the following code in the FourierMain module:

'

' FourierMain - Main module stores global state of controls

' and provides initialization code

'

Public theFourier As Fourier.Fourier 'Global instance of Fourier object

Public theFFTData As MWComplex 'Global instance of MWComplex to accept FFT

Public InputData As Range 'Input data range

Public Interval As Double 'Sampling interval

Public Frequency As Range 'Output frequency data range

Public PowerSpect As Range 'Output power spectral density range

Public bPlot As Boolean 'Holds the state of plot flag

Public theUtil As MWUtil 'Global instance of MWUtil object

Public bInitialized As Boolean 'Module-is-initialized flag

Private Sub LoadFourier()

'Initializes globals and Loads the Spectral Analysis form

Dim MainForm As frmFourier

On Error GoTo Handle_Error

Call InitApp

Set MainForm = New frmFourier

Call MainForm.Show

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub InitApp()

'Initializes classes and libraries. Executes once

'for a given session of Excel

If bInitialized Then Exit Sub

On Error GoTo Handle_Error

If theUtil Is Nothing Then

Set theUtil = New MWUtil

Call theUtil.MWInitApplication(Application)

End If

If theFourier Is Nothing Then

Set theFourier = New Fourier.Fourierclass

End If

4-16

Spectral Analysis Example

If theFFTData Is Nothing Then

Set theFFTData = New MWComplex

End If

bInitialized = True

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Creating the Visual Basic Form
The next step in the integration process develops a user interface for your
add-in using the Visual Basic Editor. To create a new user form and populate
it with the necessary controls:

1 Right-click VBAProject in the VBA project window and select
Insert > UserForm.

A new form appears under Forms in the VBA project window.

4-17

4 Usage Examples

2 In the form’s property page, set the Name property to frmFourier and the
Caption property to Spectral Analysis.

3 Add a series of controls to the blank form to complete the dialog box, as
summarized in the following table:

Controls Needed for Spectral Analysis Example

Control Type Control Name Properties Purpose

CheckBox chkPlot Caption =
Plot time
domain signal
and power
spectral
density

Plots input
data and power
spectral density.

4-18

Spectral Analysis Example

Controls Needed for Spectral Analysis Example (Continued)

Control Type Control Name Properties Purpose

CommandButton btnOK Caption = OK

Default = True

Executes the
function and
dismisses the
dialog box.

CommandButton btnCancel Caption =
Cancel

Cancel = True

Dismisses
the dialog
box without
executing the
function.

Frame Frame1 Caption = Input
Data

Groups all input
controls.

Frame Frame2 Caption =
Output Data

Groups all
output controls.

Label Label1 Caption = Input
Data:

Labels the
RefEdit for
input data.

TextBox edtSample Not applicable Not applicable

Label Label2 Caption =
Sampling
Interval

Labels the
TextBox for
sampling
interval.

Label Label3 Caption =
Frequency:

Labels the
RefEdit for
frequency
output.

Label Label4 Caption = FFT -
Real Part:

Labels the
RefEdit for real
part of FFT.

Label Label5 Caption = FFT
- Imaginary
Part:

Labels the
RefEdit for
imaginary part
of FFT.

4-19

4 Usage Examples

Controls Needed for Spectral Analysis Example (Continued)

Control Type Control Name Properties Purpose

Label Label6 Caption
= Power
Spectral
Density

Labels the
RefEdit for
power spectral
density.

RefEdit refedtInput Not applicable Selects range for
input data.

RefEdit refedtFreq Not applicable Selects output
range for
frequency
points.

RefEdit refedtReal Not applicable Selects output
range for real
part of FFT of
input data.

RefEdit refedtImag Not applicable Selects output
range for
imaginary part
of FFT of input
data.

RefEdit refedtPowSpect Not applicable Selects output
range for power
spectral density
of input data.

The following figure shows the controls layout on the form:

4-20

Spectral Analysis Example

4 When the form and controls are complete, right-click the form and select
View Code.

The following code listing shows the code to implement. Notice that this
code references the control and variable names listed in Controls Needed
for Spectral Analysis Example on page 4-18. If you used different names
for any of the controls or any global variable, change this code to reflect
those differences.

'

'frmFourier Event handlers

'

Private Sub UserForm_Activate()

'UserForm Activate event handler. This function gets called before

'showing the form, and initializes all controls with values stored

'in global variables.

On Error GoTo Handle_Error

If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub

'Initialize controls with current state

If Not InputData Is Nothing Then

refedtInput.Text = InputData.Address

End If

4-21

4 Usage Examples

edtSample.Text = Format(Interval)

If Not Frequency Is Nothing Then

refedtFreq.Text = Frequency.Address

End If

If Not IsEmpty (theFFTData.Real) Then

If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address

End If

End If

If Not IsEmpty (theFFTData.Imag) Then

If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address

End If

End If

If Not PowerSpect Is Nothing Then

refedtPowSpect.Text = PowerSpect.Address

End If

chkPlot.Value = bPlot

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCancel_Click()

'Cancel button click event handler. Exits form without computing fft

'or updating variables.

Unload Me

End Sub

Private Sub btnOK_Click()

'OK button click event handler. Updates state of all variables from controls

'and executes the computefft or plotfft method.

Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then

MsgBox ("Invalid range entered for Input Data")

Exit Sub

4-22

Spectral Analysis Example

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then

MsgBox ("Sampling interval must be greater than zero")

Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then

Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then

theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then

theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then

Set PowerSpect = R

End If

bPlot = chkPlot.Value

'Compute the fft and optionally plot power spectral density

If bPlot Then

Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect, _

InputData, Interval)

Else

Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect, _

InputData, Interval)

End If

GoTo Exit_Form

Handle_Error:

MsgBox (Err.Description)

Exit_Form:

Unload Me

End Sub

4-23

4 Usage Examples

Adding the Spectral Analysis Menu Item to Excel
The last step in the integration process adds a menu item to Excel so that you
can open the tool from the Excel Tools menu. To do this, add event handlers
for the workbook’s AddinInstall and AddinUninstall events that install
and uninstall menu items. The menu item calls the LoadFourier function
in the FourierMain module.

To implement the menu item:

1 Right-click the ThisWorkbook item in the VBA project window and select
View Code.

2 Place the following code into ThisWorkbook.

Private Sub Workbook_AddinInstall()

'Called when Addin is installed

Call AddFourierMenuItem

4-24

Spectral Analysis Example

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled

Call RemoveFourierMenuItem

End Sub

Private Sub AddFourierMenuItem()

Dim ToolsMenu As CommandBarPopup

Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)

If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."

NewMenuItem.OnAction = "LoadFourier"

End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item

Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

3 Save the add-in.

Now that the VBA coding is complete, you can save the add-in. Save this
file into the <project-folder>\distrib folder that Deployment Tool
created when building the project. Here, <project-folder> refers to the
project folder that Deployment Tool used to save the Fourier project. Name
the add-in Spectral Analysis.

a From the Excel main menu, select File > Properties.

4-25

4 Usage Examples

b When the Workbook Properties dialog box appears, click the Summary
tab, and enter Spectral Analysis as the workbook title.

c Click OK to save the edits.

d From the Excel main menu, select File > Save As.

e When the Save As dialog box appears, select Microsoft Excel Add-In
(*.xla) as the file type, and browse to <project-folder>\distrib.

f Enter Fourier.xla as the file name and click Save to save the add-in.

Testing the Add-In
Before distributing the add-in, test it with a sample problem.

Spectral analysis is commonly used to find the frequency components of a
signal buried in a noisy time domain signal. In this example you will create a
data representation of a signal containing two distinct components and add
to it a random component. This data along with the output will be stored in
columns of an Excel worksheet, and you will plot the time-domain signal
along with the power spectral density.

Creating the Test Problem
Follow these steps to create the test problem:

1 Start a new session of Excel with a blank workbook.

2 From the main menu, select Tools > Add-Ins.

3 When the Add-Ins dialog box appears, click Browse.

4 Browse to the <project-folder>\distrib folder, select Fourier.xla,
and click OK.

The Spectral Analysis add-in appears in the available Add-Ins list and
is selected.

5 Click OK to load the add-in.

This add-in installs a menu item under the Excel Toolsmenu. You can display
the Spectral Analysis GUI by selecting Tools > Spectral Analysis. Before

4-26

Spectral Analysis Example

invoking the add-in, create some data, in this case a signal with components
at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling rate of 0.01 s.
Put the time points into column A and the signal points into column B.

Creating the Data
To create the data:

1 Enter 0 for cell A1 in the current worksheet.

2 Click cell A2 and type the formula "= A1 + 0.01".

3 Click and hold the lower-right corner of cell A2 and drag the formula down
the column to cell A1001. This procedure fills the range A1:A1001 with the
interval 0 to 10 incremented by 0.01.

4 Click cell B1 and type the following formula

"= SIN(2*PI()*15*A1) + SIN(2*PI()*40*A1) + RAND()"

Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools > Spectral Analysis from the main menu.

2 Click the Input Data box.

3 Select the B1:B1001 range from the worksheet, or type this address into
the Input Data field.

4 In the Sampling Interval field, type 0.01.

5 Select Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output, and likewise enter D1:D1001,
E1:E1001, and F1:F1001 for the FFT real and imaginary parts, and
spectral density.

4-27

4 Usage Examples

7 Click OK to run the analysis.

The next figure shows the output.

The power spectral density reveals the two signals at 15 and 40 Hz.

Packaging and Distributing the Add-In
As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can be installed onto
other computers that need to use the Spectral Analysis add-in.

1 On the Package tab, add the MATLAB Compiler Runtime (the MCR) by
clicking Add MCR.

4-28

Spectral Analysis Example

2 Next, add others files useful for end users. The readme.txt file contains
important information about others files useful for end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 On Windows, the package is a self-extracting executable. On platforms
other than Windows, it is a .zip file. Verify that the contents of the
distrib folder contains the files you specified.

Note When the self-extracting executable is uncompressed on a system,
VCREDSIT_X86 is installed. VCREDSIT_X86 installs run-time components
of Microsoft Visual C++ libraries necessary for running Visual C++
applications.

Installing the Add-In
To install this add-in onto another computer, copy the Fourier_pkg.exe
package to that machine, run it from a command prompt, and follow the
instructions in the readme.txt file that is automatically generated with your
packaged output.

4-29

4 Usage Examples

4-30

5

Function Wizard

• “Overview of the Function Wizard ” on page 5-2

• “Installing the Function Wizard Add-In” on page 5-3

• “Starting the Function Wizard” on page 5-5

• “Understanding the Function Viewer” on page 5-7

• “Component Browser” on page 5-9

• “Function Properties” on page 5-10

• “Argument Properties” on page 5-15

• “Function Utilities” on page 5-17

5 Function Wizard

Overview of the Function Wizard
The Function Wizard enables you to pass Microsoft Excel (Excel 2000 or later)
worksheet values to a compiled MATLAB model and to return model output
to a cell or range of cells in the worksheet. The Function Wizard provides an
intuitive interface to Excel worksheets. Knowledge of Microsoft Visual Basic
for Applications (VBA) programming is not required.

The Function Wizard reflects any changes that you make in the worksheets,
such as range selections. Going in the opposite direction, you can use the
Function Wizard to control the placement and output of data from MATLAB
functions to the worksheets.

The Function Wizard does not currently support the MATLAB struct,
sparse, and complex data types.

5-2

Installing the Function Wizard Add-In

Installing the Function Wizard Add-In

In this section...

“Overview” on page 5-3

“Installing with Versions of Microsoft Office Older Than 2007 ” on page 5-3

“Installing with Microsoft Office 2007” on page 5-3

Overview
The Function Wizard GUI is contained in an Microsoft Excel add-in
(mlfunction.xla) residing in the matlabroot\toolbox\matlabxl\matlabxl
folder. You must install this add-in before using the Function Wizard.

To install the add-in:

The Function Wizard is not packaged by default with deployed components.
To distribute the wizard, place mlfunction.xla in the top-level folder of the
installed component.

Installing with Versions of Microsoft Office Older
Than 2007

1 Select Tools > Add-Ins from the Excel main menu.

2 If the Function Wizard was previously installed, MATLAB Function
Wizard appears in the list. Select the item and click OK.

If the Function Wizard was not previously installed, click Browse and
proceed to the matlabroot\toolbox\matlabxl\matlabxl folder. Select
mlfunction.xla. Click OK in this dialog box and in the preceding one.

Installing with Microsoft Office 2007

1 Click the Microsoft Office button .

2 Select Excel Options.

5-3

5 Function Wizard

3 Select Add-ins. UnderManage, select Excel Add-ins and click Go.

4 Browse to matlabroot/toolbox/matlabxl/matlabxl and select the
MATLAB Function Wizard by choosing mlfunction.xla.

Note The add-in may appear as mlfunction if it has previously been
installed.

5-4

Starting the Function Wizard

Starting the Function Wizard

In this section...

“Overview” on page 5-5

“Starting the Function Wizard with Versions of Microsoft Office Older Than
2007” on page 5-5

“Starting the Function Wizard with Microsoft Office 2007” on page 5-6

Overview
Start the Function Wizard in one of the following ways depending on what
version of Microsoft Office® you have installed.

Starting the Function Wizard with Versions of
Microsoft Office Older Than 2007
To start the Function Wizard, click Tools > MATLAB Functions from
the Excel menu bar. The starting point of the Function Wizard, called the
Function Viewer, appears. The next section explains more about the Function
Viewer and its uses.

5-5

5 Function Wizard

Starting the Function Wizard with Microsoft Office
2007
On the toolbar, select Add-Ins and then select MATLAB Functions. The
starting point of the Function Wizard, called the Function Viewer, opens. The
next section explains more about the Function Viewer and its uses.

5-6

Understanding the Function Viewer

Understanding the Function Viewer

In this section...

“Overview” on page 5-7

“Using the Function Viewer” on page 5-7

“Loading and Executing Functions” on page 5-7

Overview
The Function Viewer controls the execution of worksheet functions. Use the
Function Viewer to organize the list of all currently loaded MATLAB Builder
EX functions.

Using the Function Viewer
The Function Viewer displays the names of all loaded functions. You can edit
each name to provide a more descriptive identifier. A check box for each entry
denotes the active/inactive state of each function. Inactive functions are not
executed when you click Execute.

Below the function list is a group of eight buttons. To add a new component to
the list of loaded worksheet functions, click New (see “Component Browser”
on page 5-9).

Each of the other buttons performs a specific action on the currently selected
function. To select a function, left-click the list item. The row becomes
selected. You can change the current selection by left-clicking a different list
item, or by using the up and down arrow keys on your keyboard.

Loading and Executing Functions
To load and execute a MATLAB Builder EX function in your worksheet
requires three steps:

1 Load a MATLAB Builder EX component.

Click New on the Function Viewer to display the Component Browser.
(See “Component Browser” on page 5-9.) Use this browser to select the

5-7

5 Function Wizard

component you want to load from the list of all currently installed MATLAB
Builder EX components. From the selected component, add the method
that you want to call.

2 Set the inputs, outputs, and other properties of your function.

Click Edit to display the Function Properties dialog box. (See “Function
Properties” on page 5-10.)

3 Click Execute on the Function Viewer.

When you click Execute, functions execute in the order displayed in the
list.

5-8

Component Browser

Component Browser
The Component Browser lists all MATLAB Builder EX components currently
installed on the system. When you click New on the Function Viewer, this
dialog box appears:

The Component Browser lists each component by name and version.
Expanding a component reveals the class name at the next level. You can
also expand the class to reveal the MATLAB functions that make up the
class methods.

Select the desired method and click Add to add a function. To load all
methods of a class, select the class name and click Add. Added functions
appear under Current Selections on the right of the browser.

To remove a function before returning to the Function Viewer, select it under
Current Selections and click Remove.

5-9

5 Function Wizard

Function Properties

In this section...

“Function Properties Dialog Box” on page 5-10

“Editing Function Arguments” on page 5-11

Function Properties Dialog Box
This group of dialog boxes sets properties and values for the inputs and
outputs. You can map inputs and outputs to ranges in your worksheet. You
can also rename a function with any of these dialog boxes.

When you click Edit on the Function Viewer, the Function Properties dialog
box appears, as shown.

The Add and Delete buttons become active when you click varargin
Arguments.

5-10

Function Properties

Click the Outputs tab to switch to editing outputs.

Editing Function Arguments
Function arguments may be either required arguments or
varargin/varargout arguments:

• Required arguments appear first on the left or right sides of a MATLAB
function and are not named varargin or varargout.

• varargin/varargout arguments always appear as the last input or output.
They let you specify a variable number of arguments.

Editing Required and Varargin/Varargout Arguments
To edit required arguments, select the argument from the list and click
Properties.

Before you can edit varargin/varargout arguments, you must first
explicitly add them using Add. If the MATLAB function does not have
varargin/varargout arguments, the ability to add arguments to the list is
disabled. After you have added varargin/varargout arguments, you can
edit them in the same way as required arguments. When you are editing
varargin/varargout arguments, the Function Properties dialog box appears
as shown:

5-11

5 Function Wizard

Editing Required Outputs
When you are editing required output arguments, the Function Properties
dialog box appears as shown:

5-12

Function Properties

The Add and Delete buttons become active when you click
varargout Arguments.

Click the Inputs tab to switch to editing inputs.

5-13

5 Function Wizard

Editing varargout Outputs
When you are editing varargout outputs, the Function Properties dialog
box appears as shown:

5-14

Argument Properties

Argument Properties

In this section...

“Input Argument Properties Dialog Box” on page 5-15

“Output Argument Properties Dialog Box” on page 5-16

Input Argument Properties Dialog Box
Here is an example of the Argument Properties dialog box for input
arguments. In this example, the input arguments have a range of A1 to A10.

From this dialog box you can:

• Select the Range list to specify a range of current input arguments.

• Click Auto recalclulate on change to tell MATLAB to recalculate the
current function when any cell in the current argument changes.

• Select the Value list to set a single value for the current argument. Then
select the type from the Type list.

• Click Options to set the conversion options. Then set the options in the
Input Conversion Options dialog box as shown:

5-15

5 Function Wizard

Output Argument Properties Dialog Box
Here is an example of the Argument Properties dialog box for output
arguments. In this example, the output argument is A12.

From this dialog box you can

• From the Range list, select the worksheet range to be used as the output
argument.

• Select Auto resize to tell MATLAB to adjust the output range to fit the
output array. This setting is useful when the target output from a method
call is a range of cells in an Excel worksheet and the output array size and
shape is not known at the time of the call.

• Select Transpose output to transpose the output arguments. This setting
is useful when calling a component where the MATLAB function returns
outputs as row vectors, and you want the data in columns.

• Select Output as date to coerce the output values to become Excel dates.

5-16

Function Utilities

Function Utilities

In this section...

“Rename Function Dialog Box” on page 5-17

“Copy Function Dialog Box” on page 5-17

“Move Function Dialog Box” on page 5-18

Rename Function Dialog Box
Use the Rename Function dialog box to rename a function. To open this dialog
box, click Rename on the Function Viewer. Here is an example of this dialog
box, with mysum2 as the new function name:

In this dialog box, you can

• Enter a new name for the selected function.

• Click OK to save the new name and return to the Function Viewer.

• Click Cancel to return to the Function Viewer without saving the new
name.

Copy Function Dialog Box
Use the Copy Function dialog box to make copies of the current function. To
open this dialog box, click Copy on the Function Viewer.

The Copy Function dialog box has two tabs:

• The Standard tab creates a specified number of copies of the function
while copying any argument/range values you have set. Here is an
illustration of this dialog box, with the number of copies, set to 1:

5-17

5 Function Wizard

• The Advanced tab creates a rectangular array of copies of the current
function in the current worksheet, and optionally copies the cell contents of
ranges referenced by the function’s arguments.

When you set the number of rows and columns and the row/column
increments, the copy process automatically updates cell references by the
specified increment amounts.

- Positive increments move rows down and columns to the right.

- Negative increments move rows up and columns to the left.

The following example shows the Advanced tab:

Move Function Dialog Box
Use the Move Function dialog box to move the currently selected function to a
new position in the current worksheet.

When you set the row and column increments, the move process automatically
updates cell references by these values.

5-18

Function Utilities

• Positive increments move rows down and columns to the right.

• Negative increments move rows up and columns to the left.

You can also optionally move the cell contents of any ranges referenced by
the function.

Here is an illustration of the Move Function dialog box, set to move the
location by two rows and two columns, and to move the cell contents:

5-19

5 Function Wizard

5-20

6

Function Reference

componentinfo

Purpose Query system registry about component created with MATLAB Builder
EX

Syntax info = componentinfo
info = componentinfo(component_name)
info = componentinfo(component_name, major_revision_number)
info = componentinfo(component_name, major_revision_number,

minor_revision_number)

Arguments component_name The MATLAB string providing the
name of a MATLAB Builder EX
component. Names are case sensitive.
If this argument is not supplied, the
function returns information on all
installed components.

major_revision_number Component major revision number.
If this argument is not supplied, the
function returns information on all
major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

Description info = componentinfo returns information for all components
installed on the system.

info = componentinfo(component_name) returns information for all
revisions of component_name.

info = componentinfo(component_name, major_revision_number)
returns information for the most recent minor revision corresponding to
major_revision_number of component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major
and minor version of component_name.

6-2

componentinfo

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown below.

Value Information Returned

> 0 Information on a specific major and minor revision

0 Information on the most recent revision.
When omitted, minor_revision_number is assumed to be
equal to 0.

< 0 Information on all versions

Note Although properties and events may appear in the output for
componentinfo, they are not supported by builder components.

Registry
Information

The information about a component has the fields shown in the
following table.

Registry Information Returned by componentinfo

Field Description

Name Component name.

TypeLib Component type library.

LIBID Component type library GUID.

MajorRev Major version number .

MinorRev Minor version number.

6-3

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

FileName Type library file name and path. Since all the MATLAB
Builder EX components have the type library bound into the
DLL, this file name is the same as the DLL name and path.

Interfaces An array of structures defining all interface definitions in
the type library. Each structure contains two fields:

• Name - Interface name.

• IID - Interface GUID.

6-4

componentinfo

Registry Information Returned by componentinfo (Continued)

CoClasses An array of structures defining all COM
classes in the component. Each structure
contains these fields:

• Name - Class name.

• CLSID - GUID of the class.

• ProgID - Version-dependent program ID.

• VerIndProgID - Version-independent
program ID.

• InprocServer32 - Full name and path to
component DLL.

• Methods - A structure containing function
prototypes of all class methods defined for
this interface. This structure contains four
fields:

- IDL - An array of Interface Description
Language function prototypes.

- M - An array of MATLAB function
prototypes.

- C - An array of C-language function
prototypes.

- VB - An array of VBA function
prototypes.

• Properties - A cell array containing the
names of all class properties.

• Events - A structure containing function
prototypes of all events defined for this
class. This structure contains four fields:

6-5

componentinfo

Registry Information Returned by componentinfo (Continued)
(Continued)

- IDL - An array of Interface Description
Language function prototypes.

- M - An array of MATLAB function
prototypes.

- C - An array of C-language function
prototypes.

- VB - An array of VBA function
prototypes.

Examples Function Call Returns

Info = componentinfo Information for all installed
components.

Info =
componentinfo('mycomponent')

Information for all revisions
of mycomponent.

Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0
of mycomponent.

6-6

deploytool

Purpose Open GUI for MATLAB Builder EX and MATLAB Compiler

Syntax deploytool

Description The deploytool command displays the Deployment Tool dialog box,
which is the graphical user interface (GUI) for MATLAB Builder EX
and MATLAB Compiler.

See Chapter 1, “Getting Started” for more information about using the
Deployment Tool to create COM components, and see “Getting Started”
in the MATLAB Compiler documentation for information about using
the Deployment Tool to create standalone applications and libraries.

Desired Result Command

Starts Deployment
Tool GUI with the
New/Open dialog
active

deploytool (default)
or
deploytool -n

Starts Deployment
Tool GUI and loads
project_name

deploytool project_name.prj

Starts Deployment
Tool command line
interface and builds
project_name after
initializing

deploytool -build project_name.prj

Starts Deployment
Tool command
line interface
and packages
project_name after
initializing

deploytool -package project_name.prj

Displays MATLAB
Help for the
deploytool command

deploytool -?

6-7

deploytool

See Also “Product Overview” on page 1-2

Chapter 3, “Programming with MATLAB® Builder EX ”

6-8

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc -W 'excel:component_name,class_name,major.minor'
[-b] [-T link:lib file1..[filen]]
[-d output_dir_path]

mcc -B 'cexcel:component_name,class_name,major.minor'
[-d output_dir_path]

Description mcc is the MATLAB command that invokes MATLAB Compiler. You
can issue the mcc command either from the MATLAB command prompt
(MATLAB mode) or the DOS or UNIX® command line (standalone
mode).

Options The -W option is used when running mcc with the builder.

Note For a complete list of all mcc command options, see mcc in the
MATLAB Compiler User’s Guide documentation.

-W
Tells the compiler to create an Excel wrapper. This option takes
a string argument that specifies the following characteristics of
the component.

-W String
Elements

Description

excel: Keyword that tells the compiler the type of component to create,
followed by a colon. Specify excel to create an Excel component.

component_name Specifies the name of the component to be created.

class_name Specifies the name of the class to be created. If you do not specify
the class name, mcc uses the component name as the default.

6-9

mcc

-W String
Elements

Description

major Specifies the major version number (for example, 1 in 1.0). If you
do not specify a version number, mcc uses the latest version built or
1.0, if there is no previous version.

minor Specifies the minor version number (for example, 0 in 1.0). If you
do not specify a version number, mcc uses the latest version built or
1.0, if there is no previous version.

[-d output_dir_path]
(Optional) Tells the builder to create a folder and copy the output
files to it. If you use mcc instead of the Deployment Tool, the
project_folder\src and project_folder\distrib folders are
not automatically created.

[-T link:lib file1..[filen]]
(Optional) Tells the compiler to create a DLL. Specify the keyword
link:lib, which links objects into a shared library (DLL).

[-b]
(Optional) Generates an Excel compatible formula function for
each MATLAB file.

-B
Tells the compiler to use the cexcel bundle file option to simplify
command line entry. By using this alternative to the -W option,
the -T or the -b options do not need to be specified.

-B String Elements Description

cexcel: Keyword that tells the compiler to create an Excel component using
the bundle file option.

component_name Specifies the name of the component to be created.

class_name Specifies the name of the class to be created. If you do not specify
the class name, mcc uses the component name as the default.

6-10

mcc

-B String Elements Description

major Specifies the major version number (for example, 1 in 1.0). If you
do not specify a version number, mcc uses the latest version built or
1.0, if there is no previous version.

minor Specifies the minor version number (for example, 0 in 1.0). If you
do not specify a version number, mcc uses the latest version built or
1.0, if there is no previous version.

[-d output_dir_path]
(Optional) Tells the builder to create a folder and copy the output
files to it. If you use mcc instead of the Deployment Tool, the
project_folder\src and project_folder\distrib folders are
not automatically created.

Examples Using -W to Create an Excel Component

mcc -W 'excel:mycomponent,myclass,1.0' -T link:lib
foo.m bar.m

This example shows the mcc command used to create a COM component
called mycomponent containing single COM class named myclass with
methods foo and bar, and a version of 1.0 (note both major and minor
versions are coded). The -T option tells mcc to create a DLL.

Using -b to Create a Function for Each MATLAB File

mcc -W 'excel:mycomponent,myclass,1.0' -b -T link:lib
foo.m bar.m

To generate an Excel compatible formula function for each MATLAB
file, specify the -b option.

Using -B to Simplify Command Input

mcc -B 'cexcel:mycomponent,myclass,1.0' foo.m bar.m

6-11

mcc

As an alternative to using the excel keyword, use the cexcel bundle
file option to simplify command line input. In the example, note how
you do not need to specify the -T or the -b options when using -B.

6-12

7

Utility Library for Microsoft
COM Components

• “Referencing Utility Classes” on page 7-2

• “Utility Library Classes” on page 7-3

• “Enumerations” on page 7-31

7 Utility Library for Microsoft® COM Components

Referencing Utility Classes
This section describes the MWComUtil library. This library is freely
distributable and includes several functions used in array processing, as well
as type definitions used in data conversion. This library is contained in the
file mwcomutil.dll. It must be registered once on each machine that uses
Microsoft COM components created by MATLAB Builder EX.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes”
on page 7-3) and three enumerated types (see “Enumerations” on page 7-31).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Microsoft Visual Basic IDE. To do this select Tools >
References from the main menu of the Visual Basic Editor. The References
dialog box appears with a scrollable list of available type libraries. From this
list, select MWComUtil 1.0 Type Library and click OK.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the folder in which the component resides.

7-2

Utility Library Classes

Utility Library Classes

In this section...

“Class MWUtil” on page 7-3

“Class MWFlags” on page 7-10

“Class MWStruct” on page 7-16

“Class MWField” on page 7-23

“Class MWComplex” on page 7-24

“Class MWSparse” on page 7-26

“Class MWArg” on page 7-29

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Microsoft
Excel). It is most efficient to declare one variable of this type in global scope
within each module that uses it. The methods of MWUtil are:

• “Sub MWInitApplication(pApp As Object)” on page 7-3

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page 7-5

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page 7-7

• “Sub MWDate2VariantDate(pVar)” on page 7-9

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Microsoft Excel.

7-3

7 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses COM components created by MATLAB Builder for .NET. An error is
generated if a method call is made to a member class of any MATLAB Builder
for .NET COM component, and the library has not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

7-4

Utility Library Classes

Note If you are developing concurrently with multiple versions of MATLAB
and MWComUtil.dll, for example, using this syntax:

Set MCLUtil = CreateObject("MWComUtil.MWUtil")

requires you to recompile your COM modules every time you upgrade. To
avoid this, make your call to the MWUtil module version-specific, for example:

Set MCLUtil = CreateObject("MWComUtil.MWUtilx.x")

where x.x is the specific version number.

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack into
the array. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

7-5

7 Utility Library for Microsoft® COM Components

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

7-6

Utility Library Classes

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. From 0 to
32 arguments can be
passed.

Return Value. None.

7-7

7 Utility Library for Microsoft® COM Components

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

7-8

Utility Library Classes

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00. By default, numeric dates
that are output parameters from compiled MATLAB functions are passed
as Doubles that need to be decremented by the COM date bias as well as
coerced to COM dates. The MWDate2VariantDate method performs this
transformation and additionally converts dates in string form to COM date
types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error

7-9

7 Utility Library for Microsoft® COM Components

occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion flags
(See “Data Conversion Rules” for more information on conversion between
MATLAB and COM Automation types.) All MATLAB Builder for .NET COM
components contain a reference to an MWFlags object that can modify data
conversion rules at the object level. This class contains these properties and
method:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page 7-10

• “Property DataConversionFlags As MWDataConversionFlags” on page 7-13

• “Sub Clone(ppFlags As MWFlags)” on page 7-15

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page 7-11

• “Property InputArrayIndFlag As Long” on page 7-12

7-10

Utility Library Classes

• “Property OutputArrayFormat As mwArrayFormat” on page 7-12

• “Property OutputArrayIndFlag As Long” on page 7-13

• “Property AutoResizeOutput As Boolean” on page 7-13

• “Property TransposeOutput As Boolean” on page 7-13

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to .NET Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules”.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

7-11

7 Utility Library for Microsoft® COM Components

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat. This property of
type mwArrayFormat controls the formatting of arrays passed as output
parameters to MATLAB Builder NE class methods. The default value is
mwArrayFormatAsIs. The behaviors indicated by this flag are listed in the
next table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules”.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

7-12

Utility Library Classes

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a COM component, where the
MATLAB function returns outputs as row vectors, and you desire to place the
data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 7-13

• “Property InputDateFormat As mwDateFormat” on page 7-14

• “PropertyOutputAsDate As Boolean” on page 7-14

• “PropertyDateBias As Long” on page 7-14

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code are
different types, e.g., Long, Integer, etc., and all variables passed to the
compiled MATLAB code must be doubles. The default value for this property
is mwTypeDefault, which uses the default rules in “Data Conversion Rules”.

7-13

7 Utility Library for Microsoft® COM Components

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on .NET Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table.

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in “Data
Conversion Rules”.

mwDateFormatString Convert input dates to strings.

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with COM components created by MATLAB Builder NE. To
process dates with such code, set this property to 0.

This example uses data conversion flags to reshape the output from a
method compiled from a MATLAB function that produces an output vector of
unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)

7-14

Utility Library Classes

p(((k*k+1)/2):k:q) = 0;
end

end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and
n. Assume that this function is included in a class named myclass that
is included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output. To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an
explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

7-15

7 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains seven properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page 7-16

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page 7-18

• “Property NumberOfFields As Long” on page 7-21

• “Property NumberOfDims As Long” on page 7-21

• “Property Dims As Variant” on page 7-21

• “Property FieldNames As Variant” on page 7-21

• “Sub Clone(ppStruct As MWStruct)” on page 7-22

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

7-16

Utility Library Classes

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green",
' and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

7-17

7 Utility Library for Microsoft® COM Components

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. Between 0
and 32 index arguments
can be entered. To
reference an element
of the array, specify all
indexes as well as the
field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2
x("green") = 0.4

7-18

Utility Library Classes

x("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct
class. In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green"
, and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

• All indices and field name

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the
array in the previous example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index
array:

Dim Index(1 To 2) As Integer

7-19

7 Utility Library for Microsoft® COM Components

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

7-20

Utility Library Classes

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in
the struct array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

7-21

7 Utility Library for Microsoft® COM Components

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

7-22

Utility Library Classes

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is
'also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

• “Property Name As String” on page 7-23

• “Property Value As Variant” on page 7-23

• “Property MWFlags As MWFlags” on page 7-23

• “Sub Clone(ppField As MWField)” on page 7-24

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a

7-23

7 Utility Library for Microsoft® COM Components

structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains four properties/methods:

• “Property Real As Variant” on page 7-24

• “Property Imag As Variant” on page 7-25

• “Property MWFlags As MWFlags” on page 7-26

• “Sub Clone(ppComplex As MWComplex)” on page 7-26

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).

7-24

Utility Library Classes

Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

7-25

7 Utility Library for Microsoft® COM Components

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:

• “Property NumRows As Long” on page 7-27

• “Property NumColumns As Long” on page 7-27

• “Property RowIndex As Variant” on page 7-27

• “Property ColumnIndex As Variant” on page 7-27

• “Property Array As Variant” on page 7-27

• “Property MWFlags As MWFlags” on page 7-28

• “Sub Clone(ppSparse As MWSparse)” on page 7-28

7-26

Utility Library Classes

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumRows is nonzero
and any row index is greater than NumRows, a bad-index error occurs. An error
also results if the number of elements in the RowIndex array does not match
the number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this
property can be any type coercible to a Variant, as well as object types, with
the restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

7-27

7 Utility Library for Microsoft® COM Components

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double

7-28

Utility Library Classes

Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1
vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

7-29

7 Utility Library for Microsoft® COM Components

• “Property Value As Variant” on page 7-30

• “Property MWFlags As MWFlags” on page 7-30

• “Sub Clone(ppArg As MWArg)” on page 7-30

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

7-30

Enumerations

Enumerations

In this section...

“Enum mwArrayFormat” on page 7-31

“Enum mwDataType” on page 7-31

“Enum mwDateFormat” on page 7-32

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 Not applicable

mwTypeLogical 3 logical

mwTypeChar 4 char

mwTypeDouble 6 double

7-31

7 Utility Library for Microsoft® COM Components

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values

mwDateFormatString 1 Format dates as strings

7-32

A

Data Conversion

• “Data Conversion Rules ” on page A-2

• “Array Formatting Flags” on page A-12

• “Data Conversion Flags” on page A-14

A Data Conversion

Data Conversion Rules
This topic describes the data conversion rules for the MATLAB Builder EX
components. These components are dual interface Microsoft COM objects that
support data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation.

When a method is invoked on a MATLAB Builder EX component, the
input parameters are converted to the MATLAB internal array format and
passed to the compiled MATLAB function. When the function exits, the
output parameters are converted from the MATLAB internal array format
to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

The Win32 application program interface (API) provides many functions for
creating and manipulating VARIANTs in C/C++, and Visual Basic provides
native language support for this type.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic.

See the Visual Studio® documentation for definitions and API support for
COM VARIANTs. VARIANT variables are self describing and store their type
code as an internal field of the structure.

A-2

Data Conversion Rules

The following table lists the VARIANT type codes supported by the MATLAB
Builder EX components.

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type
Code
(Visual Basic)

Visual
BasicType

Definition

VT_EMPTY vbEmpty Uninitialized
VARIANT

VT_I1 char Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte
integer

VT_UI2 unsigned
short

— — Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

VT_UI4 unsigned long — — Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE® four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value
(64-bit integer, scaled
by 10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError — An HRESULT (signed
four-byte integer
representing a COM
error code)

A-3

A Data Conversion

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type
Code
(Visual Basic)

Visual
BasicType

Definition

VT_DATE DATE+ vbDate Date Eight-byte floating
point value
representing date
and time

VT_INT int — — Signed integer;
equivalent to type
int

VT_UINT unsigned int — — Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal — 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF =
True; 0x0000 = False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer
to an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY — — — Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

A-4

Data Conversion Rules

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type
Code
(Visual Basic)

Visual
BasicType

Definition

<anything>|VT_BYREF — — — Bitwise combine
VT_BYREF with any
basic type to declare
as a reference to a
value

+ Denotes Windows-specific type. Not part of standard C/C++.

The following table lists the rules for converting from MATLAB to COM.

MATLAB to COM VARIANT Conversion Rules

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of
each array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page B-16.) This
object is passed as a
VT_DISPATCH type.

A-5

A Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix is
assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with a
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use
a cell array of 1-by-L
char matrices.

sparse VT_DISPAATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page B-27.) This
object is passed as a
VT_DISPATCH type.

A-6

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex
1-by-1 double matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4.
A complex 1-by-1 single
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

int8 A real 1-by-1 int8
matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional int8
matrix converts to
a VARIANT of type
VT_I1|VT_ARRAY.
A complex
multidimensional int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

A-7

A Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2.
A complex 1-by-1 int16
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY.
A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.
A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

A-8

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY.
A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
uint32 matrix converts
to a VARIANT of type
VT_UI4|VT_ARRAY.
A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. (See
“Class MWComplex” on
page B-25.)

Function handle VT_EMPTY VT_EMPTY Not supported

Java class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

The following table lists the rules for conversion from COM to MATLAB.

COM VARIANT to MATLAB Conversion Rules

VARIANT Type

MATLAB Data Type
(scalar or array
data) Comments

VT_EMPTY Not applicable Empty array created.

VT_I1 int8

A-9

A Data Conversion

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type

MATLAB Data Type
(scalar or array
data) Comments

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR converts to a
1-by-L MATLAB char array, where L =
the length of the string to be converted.
A VARIANT of type VT_BSTR|VT_ARRAY
converts to a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

VT_DATE double 1. VARIANT dates are stored as doubles
starting at midnight Dec. 31, 1899. The
MATLAB dates are stored as doubles
starting at 0/0/00 00:00:00. Therefore, a
VARIANT date of 0.0 maps to a MATLAB
numeric date of 693960.0. VARIANT dates
are converted to MATLAB double types
and incremented by 693960.0.
2. VARIANT dates can be optionally
converted to strings. See “Data Conversion
Flags” on page A-14 for more information
on type coercion.

VT_INT int32

VT_UINT uint32

A-10

Data Conversion Rules

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type

MATLAB Data Type
(scalar or array
data) Comments

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH (varies) IDispatch* pointers are treated within
the context of what they point to. Objects
must be supported types with known data
extraction and conversion rules, or expose
a generic Value property that points to a
single VARIANT type. Data extracted from
an object is converted based upon the rules
for the particular VARIANT obtained.

Currently, support exists for Excel Range
objects as well as the MATLAB Builder EX
types MWStruct, MWComplex, MWSparse, and
MWArg. See “Utility Library Classes” on
page B-3 for information on the MATLAB
Builder EX types.

<anything>|VT_BYREF (varies) Pointers to any of the basic types are
processed according to the rules for what
they point to. The resulting MATLAB
array contains a deep copy of the values.

<anything>|VT_ARRAY (varies) Multidimensional VARIANT arrays convert
to multidimensional MATLAB arrays, each
element converted according to the rules for
the basic types. Multidimensional VARIANT
arrays of type VT_VARIANT|VT_ARRAY
convert to multidimensional cell arrays,
each cell converted according to the rules
for that specific type.

A-11

A Data Conversion

Array Formatting Flags
The MATLAB Builder EX components have flags that control how array data
is formatted in both directions. Generally, you should develop client code that
matches the intended inputs and outputs of the MATLAB functions with the
corresponding methods on the compiled COM objects, in accordance with the
rules listed in MATLAB® to COM VARIANT Conversion Rules on page A-5
and COM VARIANT to MATLAB® Conversion Rules on page A-9. In some
cases this is not possible, for example, when existing MATLAB code is used in
conjunction with a third-party product like Excel.

The following table shows the array formatting flags.

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created by the
client, sent as an input parameter to a method call on a
compiled COM object.
Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays
as matrices. When the input VARIANT is of type
VT_ARRAY| type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT|VT_ARRAY, VARIANTs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which

A-12

Array Formatting Flags

Array Formatting Flags (Continued)

Flag Description

applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal
to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling a MATLAB Builder EX component
from Excel where the MATLAB function returns outputs
as row vectors, and you want the data in columns.

A-13

A Data Conversion

Data Conversion Flags

In this section...

“CoerceNumericToType” on page A-14

“InputDateFormat” on page A-15

“OutputAsDate As Boolean” on page A-16

“DateBias As Long” on page A-16

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type.

VARIANT type codes affected by this flag are

VT_I1

VT_UI1

VT_I2

VT_UI2

VT_I4

VT_UI4

VT_R4

VT_R8

VT_CY

VT_DECIMAL

VT_INT

A-14

Data Conversion Flags

VT_UINT

VT_ERROR

VT_BOOL

VT_DATE

Valid values for this flag are

mwTypeDefault

mwTypeChar

mwTypeDouble

mwTypeSingle

mwTypeLogical

mwTypeInt8

mwTypeUint8

mwTypeInt16

mwTypeUint16

mwTypeInt32

mwTypeUint32

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion Rules ” on page A-2.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to the
MATLAB dates. Valid values for this flag are mwDateFormatNumeric
(default) and mwDateFormatString. The default converts VARIANT dates

A-15

A Data Conversion

according to the rule listed in VARIANT Type Codes Supported on page
A-3. The mwDateFormatString flag converts a VARIANT date to its string
representation. This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to the MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and the MATLAB numeric dates.
This flag allows existing MATLAB code that already performs the increment
of numeric dates by 693960 to be used unchanged with the MATLAB Builder
EX components. To process dates with such code, set this property to 0.

A-16

B

Utility Library

• “Referencing Utility Classes ” on page B-2

• “Utility Library Classes” on page B-3

• “Enumerations” on page B-32

B Utility Library

Referencing Utility Classes
This section describes the MWComUtil library provided with MATLAB Builder
EX. This library is freely distributable and includes several functions used
in array processing, as well as type definitions used in data conversion. This
library is contained in the file mwcomutil.dll. It must be registered once on
each machine that uses builder components.

Register the MWComUtil library at the DOS command prompt with the
following command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes”
on page B-3) and three enumerated types (see “Enumerations” on page
B-32). Before using these types, you must make explicit references to the
MWComUtil type libraries in the Microsoft Visual Basic IDE. To do this,
select Tools > References from the main menu of the Visual Basic editor.
The References dialog box appears with a scrollable list of available type
libraries. From this list, select MWComUtil x.x Type Library (where x.x
is the version number of the MCR) and click OK.

Note To obtain the MCR version number, use the MATLAB function
mcrversion.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the folder in which the component resides.

B-2

Utility Library Classes

Utility Library Classes

In this section...

“Class MWUtil” on page B-3

“Class MWFlags” on page B-10

“Class MWStruct” on page B-16

“Class MWField” on page B-24

“Class MWComplex” on page B-25

“Class MWSparse” on page B-27

“Class MWArg” on page B-30

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Excel). It
is most efficient to declare one variable of this type in global scope within each
module that uses it. The methods of MWUtil are

• “Sub MWInitApplication(pApp As Object)” on page B-3

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page B-5

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page B-6

• “Sub MWDate2VariantDate(pVar)” on page B-8

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Excel.

B-3

B Utility Library

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses builder components. An error is generated if a method call is made
to a member class of any builder component, and the library has not been
initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

B-4

Utility Library Classes

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack
into the array. 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature:

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _

B-5

B Utility Library

Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

B-6

Utility Library Classes

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper-left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. 0 to 32
arguments can be
passed.

Return Value. None.

Remarks. This function can process a Variant array in a single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

B-7

B Utility Library

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basicsubroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range
.
.
.
On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

B-8

Utility Library Classes

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00 (see “Data Conversion Rules
” on page A-2 for more information on conversion between MATLAB and
COM date values). By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias as well as coerced to COM dates. The
MWDate2VariantDate method performs this transformation and additionally
converts dates in string form to COM date types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function:

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error
occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")

B-9

B Utility Library

Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion flags
(see “Data Conversion Rules ” on page A-2 for more information on conversion
between MATLAB and COM Automation types). All builder components
contain a reference to an MWFlags object that can modify data conversion rules
at the object level. This class contains these properties:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page B-10

• “Property DataConversionFlags As MWDataConversionFlags” on page
B-13

• “Sub Clone(ppFlags As MWFlags)” on page B-15

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains these properties:

• “Property InputArrayFormat As mwArrayFormat” on page B-11

• “Property InputArrayIndFlag As Long” on page B-11

• “Property OutputArrayFormat As mwArrayFormat” on page B-12

• “Property OutputArrayIndFlag As Long” on page B-12

• “Property AutoResizeOutput As Boolean” on page B-13

• “Property TransposeOutput As Boolean” on page B-13

B-10

Utility Library Classes

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to builder class methods. The default value is mwArrayFormatMatrix. The
behaviors indicated by this flag are listed in the following table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules ” on page
A-2.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

B-11

B Utility Library

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the following table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed
in MATLAB® to COM VARIANT
Conversion Rules on page A-5.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

B-12

Utility Library Classes

Property AutoResizeOutput As Boolean. This flag applies to Excel
ranges only. When the target output from a method call is a range of cells
in an Excel worksheet, and the output array size and shape is not known at
the time of the call, setting this flag to True instructs the data conversion
code to resize each Excel range to fit the output array. Resizing is applied
relative to the upper-left corner of each supplied range. The default value
for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a builder component, where the
MATLAB function returns outputs as row vectors, and you desire to place the
data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page B-13

• “Property InputDateFormat As mwDateFormat” on page B-13

• “PropertyOutputAsDate As Boolean” on page B-15

• “PropertyDateBias As Long” on page B-15

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code
are different types, e.g., Long, Integer, etc., and all variables passed to
the compiled MATLAB code must be doubles. The default value for this
property is mwTypeDefault, which uses the default rules in COM VARIANT
to MATLAB® Conversion Rules on page A-9.

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on builder classes. The
default value is mwDateFormatNumeric. The behaviors indicated by this flag
are shown in the following table.

B-13

B Utility Library

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in COM
VARIANT to MATLAB® Conversion
Rules on page A-9.

mwDateFormatString Convert input dates to strings.

Example. This example uses data conversion flags to reshape the output
from a method compiled from a MATLAB function that produces an output
vector of unknown length:

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)
p(((k*k+1)/2):k:q) = 0;

end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers from 0 to n.

Assume that this function is included in a class named myclass that is
included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output.

To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an

B-14

Utility Library Classes

explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with builder components. To process dates with such code, set
this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

B-15

B Utility Library

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains these properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page B-16

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page B-18

• “Property NumberOfFields As Long” on page B-21

• “Property NumberOfDims As Long” on page B-21

• “Property Dims As Variant” on page B-21

• “Property FieldNames As Variant” on page B-21

• “Sub Clone(ppStruct As MWStruct)” on page B-22

Sub Initialize([varDims], [varFieldNames])
Allocates a structure array with a specified number and size of dimensions
and a specified list of field names.

B-16

Utility Library Classes

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays:

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green",
' and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

B-17

B Utility Library

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set and get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. 0 to 32
index arguments can be
entered. To reference
an element of the array,
specify all indexes as
well as the field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

B-18

Utility Library Classes

Field name only This format may be used only in the case of a
1-by-1 structure array and returns the named
field’s value. For example:

x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the Item
property was neglected. This is possible since
the Item property is the default property
of the MWStruct class. In this case the two
statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

Single index and field name This format accesses array elements through
a single subscripting notation. A single
numeric index n followed by the field name
returns the named field on the nth array
element, navigating the array linearly in
column-major order.
For example, consider a 2-by-2 array of
structures with fields "red", "green", and
"blue" stored in a variable x. These two
statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

B-19

B Utility Library

All indices and field name This format accesses an array element of
a multidimensional array by specifying n
indices. These statements access all four of
the elements of the array in the previous
example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

Array of indices and field
name

This format accesses an array element by
passing an array of indices and a field name.
The following example rewrites the previous
example using an index array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

B-20

Utility Library Classes

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions
in the structure array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the structure array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

B-21

B Utility Library

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance:

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

B-22

Utility Library Classes

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects:

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is also modified 'x3's "age"
' field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:

B-23

B Utility Library

MsgBox(Err.Description)
End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains these properties/methods:

• “Property Name As String” on page B-24

• “Property Value As Variant” on page B-24

• “Property MWFlags As MWFlags” on page B-24

• “Sub Clone(ppField As MWField)” on page B-24

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

B-24

Utility Library Classes

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains these properties/methods:

• “Property Real As Variant” on page B-25

• “Property Imag As Variant” on page B-25

• “Property MWFlags As MWFlags” on page B-26

• “Sub Clone(ppComplex As MWComplex)” on page B-27

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).
Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size

B-25

B Utility Library

and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

B-26

Utility Library Classes

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has these properties/methods:

• “Property NumRows As Long” on page B-27

• “Property NumColumns As Long” on page B-28

• “Property RowIndex As Variant” on page B-28

• “Property ColumnIndex As Variant” on page B-28

• “Property Array As Variant” on page B-28

• “Property MWFlags As MWFlags” on page B-28

• “Sub Clone(ppSparse As MWSparse)” on page B-29

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

B-27

B Utility Library

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is 0, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumRows is nonzero
and any row index is greater than NumRows, a bad-index error occurs. An error
also results if the number of elements in the RowIndex array does not match
the number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this
property can be any type coercible to a Variant, as well as object types, with
the restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

B-28

Utility Library Classes

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1

B-29

B Utility Library

vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has these properties/methods:

• “Property Value As Variant” on page B-31

• “Property MWFlags As MWFlags” on page B-31

• “Sub Clone(ppArg As MWArg)” on page B-31

B-30

Utility Library Classes

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

B-31

B Utility Library

Enumerations

In this section...

“Enum mwArrayFormat” on page B-32

“Enum mwDataType” on page B-32

“Enum mwDateFormat” on page B-33

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion. The following table lists the members
of this enumeration.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type. The following table lists the members of this enumeration.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 Not applicable

mwTypeLogical 3 logical

mwTypeChar 4 char

B-32

Enumerations

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeDouble 6 double

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates. The following table lists the members of this enumeration.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values.

mwDateFormatString 1 Format dates as
strings.

B-33

B Utility Library

B-34

C

Troubleshooting

C Troubleshooting

This appendix provides a table showing errors you may encounter using
MATLAB Builder EX, probable causes for these errors, and suggested
solutions.

Note MATLAB Builder EX uses MATLAB Compiler to generate components.
This means that you might see diagnostic messages from MATLAB Compiler.
See the MATLAB Compiler documentation for more information about those
messages.

MATLAB Builder EX Errors and Suggested Solutions

Message Probable Cause Suggested Solution

MBUILD.BAT: Error: The
chosen compiler does
not support building COM
objects.

The chosen compiler
does not support
building COM objects.

Rerun mbuild -setup and choose a
supported compiler.

Error in
component_name.class_name:
Error getting data
conversion flags.

Usually caused by
mwcomutil.dll not
being registered.

Open a DOS window, change folders
to matlabroot\runtime\win32
(matlabroot represents the location
of MATLAB on your system), and
run the command
mwregsvr mwcomutil.dll.

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,
open a DOS window, change
folders to <projectdir>\distrib
(<projectdir> represents the
location of your project files), and
run the command:
mwregsvr <projectdll>.dll.

C-2

http://www.mathworks.com/support/compilers/current_release/

Troubleshooting

MATLAB Builder EX Errors and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

Error in VBAProject:
Automation error The
specified module could
not be found.

This usually occurs if
MATLAB is not on the
system path. This error
message occurs if you
have more than one
version of MATLAB on
your system path.

Anytime you have multiple versions
of MATLAB, ensure that the newest
version of MATLAB appears on
your path first. You can verify that
the newest version of MATLAB is
on the path first by typing path
at the DOS prompt. See the table
Required Locations to Develop and
Use Components on page C-5.

LoadLibrary
("component_name.dll")
failed - The specified
module could not be
found.

You may get this
error message while
registering the project
DLL from the DOS
prompt. This usually
occurs if MATLAB is not
on the system path.

See the table Required Locations to
Develop and Use Components on
page C-5.

Cannot recompile the M
file xxxx because it is
already in the library
libmmfile.mlib.

The name you have
chosen for your
MATLAB file duplicates
the name of a MATLAB
file already in the library
of precompiled MATLAB
files.

Rename the MATLAB file, choosing
a name that does not duplicate the
name of an MATLAB file already in
the library of precompiled MATLAB
files.

Arguments may only be
defaulted at the end of
an argument list.

You have modified the
VB script generated for
MATLAB Builder EX
and have not provided
one or more arguments
used in the modified
script.

Provide a value for any argument
that requires an explicit value.
Arguments that accept defaults
appear at the end of the argument
list.

Unable to use accessibility
screen-readers or assistive
technologies, such as JAWS®,

Required files
JavaAccessBridge.dll
and
WindowsAccessBridge.dll

Add the following DLLs to your
Windows path:

JavaAccessBridge.dll

C-3

C Troubleshooting

MATLAB Builder EX Errors and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

no longer added
automatically to your
Windows path.

WindowsAccessBridge.dll

C-4

Troubleshooting

Required Locations to Develop and Use Components

Component Development Machine Target Machine

MCR Make sure that
matlabroot\runtime\win32
appears on your system
path ahead of any other
MATLAB installations.
(matlabroot is your root
MATLAB folder.)

Verify that
mcr_root\ver\runtime\win32
appears on your system path.
(mcr_root is your root MCR
folder.)

C-5

C Troubleshooting

Microsoft Excel Errors and Suggested Solutions

Message Probable Cause Suggested Solution

The macros in this project are
disabled. Please refer to the online
help or documentation of the host
application to determine how to
enable macros.
Note: Wording may vary
depending upon the version of
Excel you are running.

The macro security for Excel
is set to High.

Set Excel macro security
to Medium on the Security
Level tab. Select
Tools > Macro > Security.

Function Wizard Problems

Problem Probable Cause Suggested Solution

The Function Wizard Help
does not appear.

The Function Wizard Help
file (mlfunction.chm) is
not in the same folder as
the Function Wizard add-in
(mlfunction.xla).

Copy the Help file
(mlfunction.chm) into the
same folder as the add-in.

C-6

D

Examples

Use this list to find examples in the documentation.

D Examples

Magic Square Example
“Deploying an Excel Add-in Component Using the Magic Square Example”
on page 1-8

Using Load and Save
“Using Load/Save Functions to Process MATLAB Data for Deployed
Applications” on page 2-14

Programming
“Initializing MATLAB® Builder EX Libraries with Microsoft® Excel” on
page 3-4
“Creating an Instance of a Class” on page 3-6
“Calling the Methods of a Class Instance” on page 3-9
“Processing varargin and varargout Arguments” on page 3-11
“Passing an Empty varargin from Microsoft® Visual Basic Code” on page
3-12
“Calling Compiled MATLAB Functions from Microsoft® Excel” on page 3-14

The MCR User Data Interface
“Improving Data Access Using the MCR User Data Interface, COM
Components, and MATLAB® Builder EX” on page 3-24

Calling a MATLAB Function from Microsoft® Excel®
“Magic Square Example ” on page 4-2

D-2

Using Multiple Files and Variable Arguments

Using Multiple Files and Variable Arguments
“Multiple Files and Variable Arguments Example” on page 4-6

Creating a Comprehensive Microsoft® Excel® Add-In:
Spectral Analysis

“Spectral Analysis Example” on page 4-12

Utility Library Classes for COM Components
Chapter 7, “Utility Library for Microsoft COM Components”

D-3

D Examples

D-4

Index

IndexA
Add-ins

permission to build and deploy 3-15
Advanced Encryption Standard (AES)

cryptosystem 2-7
array formatting flags 3-18

B
build process 2-4

C
class 1-2
class method

calling 3-6
Class MWFlags 7-10 B-10
Class MWUtil 7-3 B-3
COM

defined 1-2
COM component

utility classes 7-1
COM VARIANT A-2
command line

differences between command-line and
GUI 2-4

command line interface 1-15
Compiler

security 2-7
compiling

complete syntactic details 6-9
Component Object Model 1-2
Component Technology File (CTF) 2-7
componentinfo function 6-2
CreateObject function 3-6
CTF (Component Technology File) archive 2-7
CTF Archive

Controlling management and storage
of. 3-26

CTF file 2-7

D
data conversion

utility classes for COM components 7-1
data conversion flags 3-18
data conversion rules A-2
Dependency Analysis Function 2-4 to 2-5
depfun 2-4 to 2-5
Deployment Tool

differences between command-line and
GUI 2-4

Starting from the command line 6-7
deploytool

differences between command-line and
GUI 2-4

DLLs 2-6
depfun 2-6
utility classes for COM components 7-1

E
Enumeration

mwArrayFormat 7-31 B-32
mwDataType 7-31 B-32
mwDateFormat 7-32 B-33

enumerations 7-31 B-32
errors

Excel C-6
MATLAB Builder EX C-2

F
flags

array formatting 3-18
data conversion 3-18

function wizard
argument properties 5-15
component browser 5-7
function properties 5-10
function utilities 5-17
function viewer 5-7

Index-1

Index

purpose 5-2
functions 3-3

L
Limitations 1-3
Load function 2-14

M
MAT files 2-14
MATLAB® Builder™ EX

Building a Component 1-11
Packaging a Component 1-15

MATLAB Compiler
build process 2-4

MATLAB data files 2-14
MATLAB file

encrypting 2-7
MATLAB objects

no support for 1-3
MATLAB® Builder EX

starting 1-9
mcc

differences between command-line and
GUI 2-4

syntax 6-9
MCOS Objects

no support for 1-3
MCR Component Cache

How to use
Overriding CTF embedding 3-26

methods 1-2
MEX-files 2-4 to 2-6

depfun 2-6

missing parameter 7-5 B-5
MWComponentOptions 3-26
MWFlags class 7-10 B-10
MWUtil class 7-3 B-3

N
New operator 3-7

R
required arguments 5-11

S
Save function 2-14
security 2-7
shared libraries 2-6

depfun 2-6
shared library 2-6
subroutines 3-3

T
troubleshooting

MATLAB Builder EX C-2

U
utility library 7-3 B-3

V
varargin/varargout 5-11
VARIANT variable A-2

Index-2

	toc
	Getting Started
	Product Overview
	MATLAB Compiler Extension
	About Component Object Model (COM)
	Limitations of Support

	Before You Use MATLAB Builder EX
	Your Role in the Deployment Process
	What You Need to Know
	Install Required Products
	Select Your C or C++ Compiler with mbuild -setup

	Deploying an Excel Add-in Component Using the Magic Square Examp
	About This Example
	Magic Square Example: MATLAB Programmer Tasks
	Starting the Deployment Tool
	Copying the Example Files
	Testing the MATLAB File You Want to Deploy
	Building Your Component
	The MATLAB Compiler Build Process
	Packaging Your Component (Optional)
	Copying the Package You Created

	Using the Command Line Interface
	Magic Square Example: Microsoft Visual Basic Programmer Tasks
	Gathering Files Necessary for Deployment
	Testing the Component
	Deploying the Microsoft Excel Add-In
	Distributing the Component to End Users
	Using the Excel Add-In

	Next Steps

	Writing Deployable MATLAB Code
	The MATLAB Application Deployment Products
	Building Your Application with the Application Deployment Produc
	What Is the Difference Between the Deployment Tool and the mcc C
	How Does MATLAB Compiler Software Build My Application?
	What You Should Know About the Dependency Analysis Function (dep
	Compiling MEX-Files, DLLs, or Shared Libraries
	The Role of the Component Technology File (CTF Archive)
	Additional Details

	Guidelines for Writing Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Runtime
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables

	Working with MATLAB Data Files Using Load and Save
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap
	ex_loadsave.m

	Programming with MATLAB Builder EX
	Overview of the Integration Process
	When to Use a Formula Function or a Subroutine
	Initializing MATLAB Builder EX Libraries with Microsoft Excel
	Creating an Instance of a Class
	Overview
	CreateObject Function
	New Operator
	How the MCR Is Shared Among Classes

	Calling the Methods of a Class Instance
	Processing varargin and varargout Arguments
	Overview
	Passing an Empty varargin from Microsoft Visual Basic Code
	Example: Passing an Empty varargin from VBA Code

	Calling Compiled MATLAB Functions from Microsoft Excel
	Handling Errors During a Method Call
	Modifying Flags
	Overview
	Array Formatting Flags
	Data Conversion Flags

	Improving Data Access Using the MCR User Data Interface, COM Com
	Overview
	Code Snippets
	MagicMatrix Function
	Building the MagicMatrix Component
	Calling setmcruserdata and getmcruserdata

	Overriding Default CTF Archive Embedding for Components Using th

	Usage Examples
	Magic Square Example
	Overview
	Creating the Project
	Adding the MATLAB Builder EX COM Function to Microsoft Excel
	Output Magic Square Results to Microsoft Excel
	Transpose the Output
	Resize the Output
	Inspecting the Microsoft Visual Basic Code

	Multiple Files and Variable Arguments Example
	Overview
	Creating the Project
	Adding the MATLAB Builder EX COM Function to Microsoft Excel
	Calling myplot
	Calling mysum Four Different Ways
	myprimes Macro
	Inspecting the Microsoft Visual Basic Code

	Spectral Analysis Example
	Overview
	Building the Component
	Integrating the Component Using VBA
	Selecting the Libraries
	Creating the Visual Basic Form
	Adding the Spectral Analysis Menu Item to Excel

	Testing the Add-In
	Creating the Test Problem
	Creating the Data
	Running the Test

	Packaging and Distributing the Add-In
	Installing the Add-In

	Function Wizard
	Overview of the Function Wizard
	Installing the Function Wizard Add-In
	Overview
	Installing with Versions of Microsoft Office Older Than 2007
	Installing with Microsoft Office 2007

	Starting the Function Wizard
	Overview
	Starting the Function Wizard with Versions of Microsoft Office O
	Starting the Function Wizard with Microsoft Office 2007

	Understanding the Function Viewer
	Overview
	Using the Function Viewer
	Loading and Executing Functions

	Component Browser
	Function Properties
	Function Properties Dialog Box
	Editing Function Arguments
	Editing Required and Varargin/Varargout Arguments
	Editing Required Outputs
	Editing varargout Outputs

	Argument Properties
	Input Argument Properties Dialog Box
	Output Argument Properties Dialog Box

	Function Utilities
	Rename Function Dialog Box
	Copy Function Dialog Box
	Move Function Dialog Box

	Function Reference
	Utility Library for Microsoft COM Components
	Referencing Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Data Conversion
	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Utility Library
	Referencing Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Troubleshooting
	Examples
	Magic Square Example
	Using Load and Save
	Programming
	The MCR User Data Interface
	Calling a MATLAB Function from Microsoft® Excel®
	Using Multiple Files and Variable Arguments
	Creating a Comprehensive Microsoft® Excel® Add-In: Spectral Anal
	Utility Library Classes for COM Components

	Index

	tables
	 Application Deployment Roles, Goals, and Tasks
	Key Tasks for the MATLAB Programmer
	Key Tasks for the Microsoft Visual Basic Programmer
	The MATLAB Suite of Application Deployment Products
	Information on CTF Archive Embedding/Extraction and Component Ca
	Controls Needed for Spectral Analysis Example
	Registry Information Returned by componentinfo
	Registry Information Returned by componentinfo (Continued)
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values
	MATLAB Builder EX Errors and Suggested Solutions
	Required Locations to Develop and Use Components
	Microsoft Excel Errors and Suggested Solutions
	Function Wizard Problems

